加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 科研进展

研究揭示青藏高原高寒草地固碳能力持续增强

2023-05-25 青藏高原研究所
【字体:

语音播报

高寒草地是青藏高原的主要植被类型,总面积约为146km2,主要分为高寒草原和高寒草甸。由于高海拔、寒冷、半干旱气候、强烈的太阳辐射、贫瘠的土壤以及短暂的生长季等,高寒草地生态系统对气候变化脆弱且敏感。研究表明,近几十年来青藏高原的升温速率约为全球同期的两倍,降水也呈显著增加趋势,整体呈现出暖湿化。气候变暖会增加总初级生产力并延长生长季节,并会增加生态系统呼吸。因此这两个过程存在较多不确定性,使得量化两者差值的青藏高原高寒草地净生态系统碳交换量大多数( NEE 变得具有挑战性。

鉴于气候变化背景下青藏高原碳循环的重要意义,许多学者使用模型评估了青藏高原的NEE。总的来说,这些模型在估计值的大小和空间分布上存在较大差异。这主要是由于驱动碳循环模型的参数需要大量的实测数据如通量观测数据,但地面观测数据的稀缺和不均匀分布常常导致模型结果准确性有限。这使得科学家对青藏高原高寒草地NEE的时空动态和调控机制认知不足,限制了评估潜在碳-气候反馈的能力。

针对这一科学问题,中国科学院青藏高原研究所研究员马耀明团队联合北京大学、美国新罕布什尔大学、美国康奈尔大学、成都理工大学,利用青藏高原25个通量观测站点的长期观测数据、卫星遥感和再分析数据及机器学习方法,阐释了青藏高原高寒草地NEE的时空变化模式和调控机制。结果表明:空间格局由高原东部和东北部的较强碳汇向西呈阶梯状逐渐减小为弱碳汇或碳源。1982年至2018年,高寒草地的碳封存量范围从26.3979.19TgCyr-1,并以每年1.14TgC的增长速率增加。高寒草原区域NEE的变化趋势倾向于由降水量来主导,而高寒草甸区域则倾向于由温度来调控。在气候暖湿化的背景下,青藏高原高寒草地的碳封存能力在持续增强。

518日,相关研究成果以Persistent and enhanced carbon sequestration capacity of alpine grasslands on the Earth’s Third Pole为题,发表在《科学进展》(Science Advances上。研究工作得到第二次青藏高原综合科学考察研究任务一之第3专题地气相互作用及其气候效应和国家自然科学基金的支持

论文链接

1.青藏高原高寒草地NEE的空间预测和时间趋势。(A)青藏高原高寒草地的通量观测站分布和地形图;(B)高寒草地植被类型分布图;(C)1982-2018年均NEE空间分布图;(D)1982-2018年NEE趋势的空间分布图;(E)1982年至2018年区域年均NEE的时间变化;(F)1982年至2018年的月均NEE变化。

2.青藏高原典型高寒草地碳通量观测站点图

打印 责任编辑:侯茜

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864

    电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

    编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有
    京ICP备05002857号-1
    京公网安备110402500047号
    网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864
    电话:86 10 68597114(总机)
       86 10 68597289(总值班室)
    编辑部邮箱:casweb@cashq.ac.cn