主要职责
中国科学院贯彻落实党中央关于科技创新的方针政策和决策部署,在履行职责过程中坚持党中央对科技工作的集中统一领导。主要职责是:
一、开展使命导向的自然科学领域基础研究,承担国家重大基础研究、应用基础研究、前沿交叉共性技术研究和引领性颠覆性技术研究任务,打造原始创新策源地。 更多+
院况简介
中国科学院是国家科学技术界最高学术机构、国家科学技术思想库,自然科学基础研究与高技术综合研究的国家战略科技力量。
1949年,伴随着新中国的诞生,中国科学院成立。建院70余年来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全作出了不可替代的重要贡献。 更多+
院领导集体
创新单元
科技奖励
科技期刊
工作动态/ 更多
中国科学院学部
中国科学院院部
语音播报
甘油氧化作为生物质平台分子增值的重要途径,其氧化产物广泛应用于制药、食品、化妆品和纺织等行业。传统的热催化甘油氧化污染大、能耗高,而电催化甘油氧化技术以水为氧化剂、以绿色电能为能量输入,为甘油氧化绿色升级提供了新路径。
过渡金属氧化物催化性能优异、成本较低,成为电催化甘油氧化反应中常用的催化材料。但是,在面向氢能产业所需的工业级电流密度下进行电催化甘油氧化时,这类材料表面易发生氧化非晶化,引发析氧副反应,降低目标产物的法拉第效率。这制约了电催化甘油氧化技术在氢能产业中的规模化应用。
近日,中国科学院金属研究所研究团队提出了通过引入Cu2+抑制过渡金属氧化物表面非晶化的新策略Cu-GOR。研究表明,在电解液中添加微量Cu2+,利用Cu2+/Cu+在电催化氧化过程中的可逆氧化还原,可维持催化材料晶体结构的稳定性,抑制过渡金属氧化物催化材料的表面非晶化过程。以泡沫镍负载Co3O4催化材料为例,在800 mA cm−2的工业级电流密度下,Cu2+的引入使目标产物甲酸的法拉第效率从62.2%提高至99.3%,性能优于已报道的催化材料。
这一催化材料和反应体系易于放大,6×6 cm2电极材料的甘油氧化产物收率达13.2 g h−1,稳定性超过100小时。同时,该策略可扩展至其他过渡金属氧化物及多种生物质电氧化反应体系,为推进生物质电催化技术在绿色氢能产业中的应用提供了新思路。
相关研究成果发表在《自然-可持续发展》(Nature Sustainability)上。

Cu2+抑制催化材料表面非晶化过程示意图
© 1996 - 中国科学院 版权所有 京ICP备05002857号-1
京公网安备110402500047号 网站标识码bm48000002
地址:北京市西城区三里河路52号 邮编:100864
电话: 86 10 68597114(总机) 86 10 68597289(总值班室)
© 1996 - 中国科学院 版权所有 京ICP备05002857号-1
京公网安备110402500047号 网站标识码bm48000002
地址:北京市西城区三里河路52号 邮编:100864
电话: 86 10 68597114(总机) 86 10 68597289(总值班室)
© 1996 - 中国科学院 版权所有
京ICP备05002857号-1
京公网安备110402500047号
网站标识码bm48000002
地址:北京市西城区三里河路52号 邮编:100864
电话:86 10 68597114(总机)
86 10 68597289(总值班室)







