加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 科研进展

科学家以光酶催化实现不对称自由基酰基化

2023-12-25 合肥物质科学研究院
【字体:

语音播报

中国科学院合肥物质科学研究院强磁场科学中心、安徽省高场磁共振成像重点实验室田长麟团队,联合南京大学黄小强团队与梁勇团队,在光酶催化研究领域取得进展。针对合作团队开发的焦磷酸硫胺素(ThDP)依赖酶和光催化协同的双催化新体系,田长麟团队依托稳态强磁场实验装置电子顺磁共振(Electron Paramagnetic Resonance,EPR),鉴定了催化反应中的自由基中间体及电子转移机制。12月18日,相关研究成果在线发表在《自然》(Nature)上。

生物制造是变革工业可持续发展最有希望的绿色技术之一。然而,生物制造的“芯片”——酶,面临催化机制理解相对有限等问题。

酶催化与光催化结合的光酶催化,融合了可见光化学多样的反应性和酶的高选择性,成为开发新酶功能最前沿的策略。该团队综合利用仿生和化学模拟的思路(图1),借助可见光激发和定向进化手段,改造焦磷酸硫胺素(ThDP)依赖酶,从而将ThDP依赖的苯甲醛裂解酶“重塑”为自由基酰基转移酶(RAT),实现了一例非天然的高对映选择性的自由基-自由基偶联反应。

针对这一光酶双催化体系,该团队综合应用低温电子顺磁共振技术和理论化学计算等方式,对机理开展了研究。其中,研究通过低温(80K)下的电子顺磁共振实验,捕获到由ThDP所衍生的ketyl自由基(Int. B)。同时,控制实验表明,PfBAL酶、光敏剂Eosin Y、底物1a、光照均是产生该自由基中间体必不可少的关键因素。此外,研究通过EPR自旋捕获(spin trapping)实验在标准反应体系中检测到特征的六重裂分谱图,证实其为中间体benzylic radical(Int. C)与捕获剂加成后的自由基产物(图2)。电子顺磁共振实验为证实该催化循环中两种关键的自由基中间体(Int. B和Int. C)的存在提供了关键的直接实验证据,揭示了新酶反应性的关键以及高立体化学选择性的来源。

研究工作得到国家重点研发计划、国家自然科学基金、中国科学院战略性先导科技专项(B类)、中国科学院青年创新促进会等的支持。

论文链接

图1. 融合化学与生物,开发新生物合成体系

图2. 机理推测与基于EPR方法的机理探究

打印 责任编辑:侯茜

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864

    电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

    编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有
    京ICP备05002857号-1
    京公网安备110402500047号
    网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864
    电话:86 10 68597114(总机)
       86 10 68597289(总值班室)
    编辑部邮箱:casweb@cashq.ac.cn