院况简介
1949年,伴随着新中国的诞生,中国科学院成立。
作为国家在科学技术方面的最高学术机构和全国自然科学与高新技术的综合研究与发展中心,建院以来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全做出了不可替代的重要贡献。 更多简介 +
院领导集体
创新单元
科技奖励
科技期刊
中国科学院学部
中国科学院院部
语音播报
中国科学院合肥物质科学研究院强磁场科学中心、安徽省高场磁共振成像重点实验室田长麟团队,联合南京大学黄小强团队与梁勇团队,在光酶催化研究领域取得进展。针对合作团队开发的焦磷酸硫胺素(ThDP)依赖酶和光催化协同的双催化新体系,田长麟团队依托稳态强磁场实验装置电子顺磁共振(Electron Paramagnetic Resonance,EPR),鉴定了催化反应中的自由基中间体及电子转移机制。12月18日,相关研究成果在线发表在《自然》(Nature)上。
生物制造是变革工业可持续发展最有希望的绿色技术之一。然而,生物制造的“芯片”——酶,面临催化机制理解相对有限等问题。
酶催化与光催化结合的光酶催化,融合了可见光化学多样的反应性和酶的高选择性,成为开发新酶功能最前沿的策略。该团队综合利用仿生和化学模拟的思路(图1),借助可见光激发和定向进化手段,改造焦磷酸硫胺素(ThDP)依赖酶,从而将ThDP依赖的苯甲醛裂解酶“重塑”为自由基酰基转移酶(RAT),实现了一例非天然的高对映选择性的自由基-自由基偶联反应。
针对这一光酶双催化体系,该团队综合应用低温电子顺磁共振技术和理论化学计算等方式,对机理开展了研究。其中,研究通过低温(80K)下的电子顺磁共振实验,捕获到由ThDP所衍生的ketyl自由基(Int. B)。同时,控制实验表明,PfBAL酶、光敏剂Eosin Y、底物1a、光照均是产生该自由基中间体必不可少的关键因素。此外,研究通过EPR自旋捕获(spin trapping)实验在标准反应体系中检测到特征的六重裂分谱图,证实其为中间体benzylic radical(Int. C)与捕获剂加成后的自由基产物(图2)。电子顺磁共振实验为证实该催化循环中两种关键的自由基中间体(Int. B和Int. C)的存在提供了关键的直接实验证据,揭示了新酶反应性的关键以及高立体化学选择性的来源。
研究工作得到国家重点研发计划、国家自然科学基金、中国科学院战略性先导科技专项(B类)、中国科学院青年创新促进会等的支持。
图1. 融合化学与生物,开发新生物合成体系
图2. 机理推测与基于EPR方法的机理探究
© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002
地址:北京市西城区三里河路52号 邮编:100864
电话: 86 10 68597114(总机) 86 10 68597289(总值班室)
编辑部邮箱:casweb@cashq.ac.cn
© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002
地址:北京市西城区三里河路52号 邮编:100864
电话: 86 10 68597114(总机) 86 10 68597289(总值班室)
编辑部邮箱:casweb@cashq.ac.cn
© 1996 - 中国科学院 版权所有
京ICP备05002857号-1
京公网安备110402500047号
网站标识码bm48000002
地址:北京市西城区三里河路52号 邮编:100864
电话:86 10 68597114(总机)
86 10 68597289(总值班室)
编辑部邮箱:casweb@cashq.ac.cn