主要职责
中国科学院贯彻落实党中央关于科技创新的方针政策和决策部署,在履行职责过程中坚持党中央对科技工作的集中统一领导。主要职责是:
一、开展使命导向的自然科学领域基础研究,承担国家重大基础研究、应用基础研究、前沿交叉共性技术研究和引领性颠覆性技术研究任务,打造原始创新策源地。 更多+
院况简介
中国科学院是国家科学技术界最高学术机构、国家科学技术思想库,自然科学基础研究与高技术综合研究的国家战略科技力量。
1949年,伴随着新中国的诞生,中国科学院成立。建院70余年来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全作出了不可替代的重要贡献。 更多+
院领导集体
创新单元
科技奖励
科技期刊
工作动态/ 更多
中国科学院学部
中国科学院院部
语音播报
磷化镍(Ni2P)具有较高的硬度以及优异的耐腐蚀性、耐磨性和高温稳定性,常用于防腐涂层和抗摩擦涂层材料。除了这些优异的结构材料特性,它还具有良好的导电性和优异的催化活性,因而可用来制备稳定服役的电化学电极,在清洁能源和催化领域应用广泛。通过合金化和掺杂等化学手段,可以对Ni2P表面电化学的反应机理和活性实现有效调控。而合金化和掺杂对Ni2P表面的化学状态、稳定性和表面电化学反应的微观调控机制缺乏系统且精确的理解,这对各类Ni2P基电极/涂层体系的优化设计和有效利用具有重要的指导意义。
近期,中国科学院宁波材料技术与工程研究所前沿交叉科学研究中心的理论研究人员和宁波大学的实验团队合作,在原子尺度上揭示了Ni2P表面各类电化学行为(表面吸附状态、析氢反应、析氧反应等)及Co合金化和Mn掺杂的调控规律和微观原理。本研究通过构建表面电化学相图确定了在析氢反应(HER)和析氧反应(OER)电位条件下表面不同的稳定构型(即分别为H和O钝化的表面结构)。而本工作的实验表征发现,在OER过程后材料表面被明显氧化,这一实验现象和本工作中的理论电化学相图一致。进一步,研究人员基于相应的表面钝化结构,从HER和OER的微观反应路径和能量上,系统揭示了Co合金化对HER活性的促进作用和Mn掺杂对OER的促进作用以及两者协同作用机理带来的优异OER+HER双功能催化性能,从原子尺度层面精确解释了在本工作实验部分制备的各类涂层体系中Mn-NiCoP具有最佳的全水解活性。研究通过计算Mn-NiCoP表面的H吸附活性,揭示了Mn掺杂对表面HER活性的空间影响规律,创新性地解释了实验上观察到的重要掺杂浓度效应——随着Mn杂质浓度的提高,HER活性先增加后降低的现象,为“少量Mn掺杂”这一重要调控要求建立了严格的基础原理。
相关研究成果以Mn-doped NiCoP Nanopin Arrays as High-Performance Bifunctional Electrocatalysts for Sustainable Hydrogen Production via Overall Water Splitting为题,发表在《纳米能源》(Nano Energy)上。研究工作得到国家自然科学基金和宁波市科技创新2025重大专项计划的支持。

图1. a、NiCoP的表面电化学相图;b-c、Mn-NiCoP表面的H和O钝化结构;d、XPS实验观察到的金属-氧结合峰。

图2. a、NiCoP和Mn-NiCoP的微观反应路径;b、平衡电压(1.23V vs RHE)下Mn-Ni2P、NiCoP和Mn-NiCoP表面OER反应的自由能变化台阶图。

图3. a、Mn掺杂浓度对HER活性的影响;b、Mn掺杂对H吸附活性的空间影响效应。
扫一扫在手机打开当前页
© 1996 - 中国科学院 版权所有 京ICP备05002857号-1
京公网安备110402500047号 网站标识码bm48000002
地址:北京市西城区三里河路52号 邮编:100864
电话: 86 10 68597114(总机) 86 10 68597289(总值班室)
© 1996 - 中国科学院 版权所有 京ICP备05002857号-1
京公网安备110402500047号 网站标识码bm48000002
地址:北京市西城区三里河路52号 邮编:100864
电话: 86 10 68597114(总机) 86 10 68597289(总值班室)
© 1996 - 中国科学院 版权所有
京ICP备05002857号-1
京公网安备110402500047号
网站标识码bm48000002
地址:北京市西城区三里河路52号 邮编:100864
电话:86 10 68597114(总机)
86 10 68597289(总值班室)








