主要职责
中国科学院贯彻落实党中央关于科技创新的方针政策和决策部署,在履行职责过程中坚持党中央对科技工作的集中统一领导。主要职责是:
一、开展使命导向的自然科学领域基础研究,承担国家重大基础研究、应用基础研究、前沿交叉共性技术研究和引领性颠覆性技术研究任务,打造原始创新策源地。 更多+
院况简介
中国科学院是国家科学技术界最高学术机构、国家科学技术思想库,自然科学基础研究与高技术综合研究的国家战略科技力量。
1949年,伴随着新中国的诞生,中国科学院成立。建院70余年来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全作出了不可替代的重要贡献。 更多+
院领导集体
科技奖励
科技期刊
科技专项
科研进展/ 更多
工作动态/ 更多
工作动态/ 更多
中国科学院学部
中国科学院院部
语音播报
针对冶金等复杂工业建模过程中存在数据不足和算法冷启动的问题,中国科学院沈阳自动化研究所数字工厂研究室提出了一种基于动态迁移学习的、在有限数据量下的工业过程时间序列预测方法。该方法以提高多步时序预测精度、降低计算成本为目标,建立了复杂工业场景下的预测模型,提高了工业时序数据预测的准确性、高效性。相关研究成果发表在IEEE Transactions on Industrial Informatics上。
工业时间序列作为一种响应生产过程信息的数据,可以对其进行分析和预测,从而对工业生产过程进行有效监控。由于工作条件复杂、数据采集环境变化和设备运行时间短,现有数据驱动的工业时间序列预测算法的精度受到较大限制。
为应对上述挑战,该团队提出了基于动态迁移学习的工业过程时间序列预测方法。该方法通过有效地利用类似设备或工况的历史数据,建立预测模型。科研人员将历史数据分成多批,并根据每批历史数据与当前时刻有限目标数据的分布距离,建立具有动态最大平均差损失的多源迁移学习框架。该框架结合多任务学习方法,建立了工业过程在线学习的多步预测模型。科研人员在太阳能发电预测和加热炉温度预测两个数据集上的实验验证了该方法的有效性。
近年来,数字工厂研究室大数据课题组致力于在工业领域开展人工智能、机器学习等方向的研究与应用工作,先后承担了国家重点研发计划、国家自然科学基金重点项目、辽宁省重点研发计划等,在工业过程预测、故障诊断、智能优化控制和工业大数据中台等方面取得了多项突破成果,并在烟草、车企、冶金和矿山等行业得到了示范性验证。
研究工作得到国家自然科学基金和辽宁省重点研发计划的支持。

工业时间序列预测框架
扫一扫在手机打开当前页
© 1996 - 中国科学院 版权所有 京ICP备05002857号-1
京公网安备110402500047号 网站标识码bm48000002
地址:北京市西城区三里河路52号 邮编:100864
电话: 86 10 68597114(总机) 86 10 68597289(总值班室)








