加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 科研进展

理化所在热电材料性能优化方面取得进展

2023-06-13 理化技术研究所
【字体:

语音播报

热电能源转换技术可实现电能和热能的直接相互转化,具有安静、可靠、易维护和体积小等优点,在工业余废热的回收应用、全固态制冷等方面具有重要应用前景。将热电转换技术应用于实际的主要障碍是低转换效率,能量转换效率直接取决于材料的无量纲热电优值zT。优化热电性能的一般策略是改善电输运性能和破坏热输运路径。熵工程是一种有效的方法,可以调节电输运性质和晶格热导率之间的微妙平衡,从而产生诸多不寻常的传输现象。当元素种类增加引起的△S大于焓增加量时,减小的吉布斯自由能使晶体结构稳定。能量的变化表现为,合金元素溶解度极限的扩展或熵驱动的结构稳定效应。稳定的结构可以保持原子的长程排列顺序,从而保持电输运框架。由于离子质量,尺寸和键态的不匹配使晶格严重畸变,材料中存在短程无序的问题。扭曲的晶格强烈散射热传导声子,极大地降低了晶格热导率,产生低的热输运特性。

近日,中国科学院理化技术研究所研究人员在SnTe热电材料中,使用GePbSbMn多重元素共合金化,在结构有序和无序之间得到平衡。多尺度层次结构使简单面心立方样品获得了低于无序界限的晶格热导率(0.3 W m-1 K-1)。中熵工程还促使能带汇聚,增加了能带有效质量,从而提高了功率因子。

工作展现了中熵工程在SnTe基热电材料性能调控方面的应用,为后续优化材料热电性能提供了新思路。相关成果以Fast Fabrication of SnTe via Non-Equilibrium Method and Enhanced Thermoelectric Propertied by Medium-Entropy Engineering为题发表在《材料化学杂志C》(Journal of Materials Chemistry C)上。相关研究工作得到国家自然科学基金委员会、中国科学院的资助。

论文链接

热电性能随温度的变化

打印 责任编辑:江澄

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864

    电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

    编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有
    京ICP备05002857号-1
    京公网安备110402500047号
    网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864
    电话:86 10 68597114(总机)
       86 10 68597289(总值班室)
    编辑部邮箱:casweb@cashq.ac.cn