加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 科研进展

分子植物卓越中心等揭示肠道微生物介导的药物耐受新机制

2023-05-09 分子植物科学卓越创新中心
【字体:

语音播报

  5月8日,《自然-代谢》(Nature Metabolism)在线发表了中国科学院分子植物科学卓越创新中心姜卫红研究组等撰写的研究论文(Inactivation of the antidiabetic drug acarbose by human intestinal microbial-mediated degradation)。该研究发现了肠道微生物介导的药物分解代谢途径及关键酶,揭示了糖尿病一线药物阿卡波糖降解及耐药的新机制。

  肠道微生物与人类协同代谢,在食物和药物的转化、修饰、降解及利用的过程中扮演着重要角色,是精准医疗中需要考虑的关键因素。阿卡波糖是治疗II型糖尿病(T2DM)的一线药物。它具有伪四糖结构,可作为α-葡萄糖苷酶的抑制剂而降低患者的血糖水平。然而,该药物临床效果个体差异较大,部分患者在长期使用后出现严重耐药。它的潜在机理特别是肠道微生物的作用,有待阐明。

  姜卫红研究组与郑州大学第一附属医院等合作,通过对临床样本的分析并利用微生物富集培养方法,确定了阿卡波糖耐药与肠道菌群之间的关联,并分离得到代谢阿卡波糖的主要肠道菌株Klebsiella grimontii TD1。进一步的宏基因组分析发现,阿卡波糖响应较弱的患者肠道中该菌的丰度较高,且随着用药时间的延长其丰度有诱导上升的趋势。动物实验表明,K. grimontii TD1能够大幅削弱阿卡波糖在T2DM模型小鼠体内的降糖效果。进一步,该研究组通过诱导富集表达谱和蛋白质谱分析等方法,在该菌中发现并鉴定了一种未报道的可代谢阿卡波糖的糖苷酶,命名为Apg(acarbose-preferred glucosidase)。该酶可将阿卡波糖降解为含有三环和二环结构的小分子产物,而使其丧失药物功能。

  此外,研究组通过结构模拟阐释了Apg的关键功能基团和催化阿卡波糖降解的潜在分子机制。种系发育分析显示,Apg及其同源基因广泛存在于肠道微生物尤其是克雷伯氏菌属。这表明肠道细菌代谢引起的阿卡波糖耐药风险在人群中普遍存在。这种“诱导降解失活”机制可能是导致非抗生素耐药的主要原因之一。对于阿卡波糖低响应的患者,可考虑通过调节肠道微生态或靶向干预代谢酶的策略来减少耐药现象的发生。

  研究工作得到国家自然科学基金的支持。扬州大学与临港实验室的科研人员参与研究。

  论文链接 

实验结果图

打印 责任编辑:侯茜
  • 物理所通过光学二次谐波产生揭示磁电耦合演变

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864

    电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

    编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有
    京ICP备05002857号-1
    京公网安备110402500047号
    网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864
    电话:86 10 68597114(总机)
       86 10 68597289(总值班室)
    编辑部邮箱:casweb@cashq.ac.cn