主要职责
中国科学院贯彻落实党中央关于科技创新的方针政策和决策部署,在履行职责过程中坚持党中央对科技工作的集中统一领导。主要职责是:
一、开展使命导向的自然科学领域基础研究,承担国家重大基础研究、应用基础研究、前沿交叉共性技术研究和引领性颠覆性技术研究任务,打造原始创新策源地。 更多+
院况简介
中国科学院是国家科学技术界最高学术机构、国家科学技术思想库,自然科学基础研究与高技术综合研究的国家战略科技力量。
1949年,伴随着新中国的诞生,中国科学院成立。建院70余年来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全作出了不可替代的重要贡献。 更多+
院领导集体
科技奖励
科技期刊
科技专项
科研进展/ 更多
工作动态/ 更多
工作动态/ 更多
中国科学院学部
中国科学院院部
语音播报
植入式生物医用材料/器械如组织工程支架、神经电子在疾病诊疗中发挥着日趋重要的角色。植入式生物医用材料/器械的安全性和功能可靠性极大程度上依赖其植入后与周围生物组织实现共形、稳定且生物相容的界面适配。然而,现有策略还难以满足复杂的界面适配要求。基于团队前期在多功能刺激响应高分子(Adv. Funct. Mater. 2020, 30 (10), 1909202; Matter 2019, 1, 626.)、天然多糖水凝胶形态编辑(Research 2021, 2021, 9786128; Research 2019, 2019, 6398296.)、生物界面适配(Natl. Sci Rev 2020, 7 (3), 629-643; Adv. Funct. Mater. 2018, 28,)方面的研究基础,研究人员使用海洋中广泛存在的天然多糖(海藻酸钠和壳聚糖),结合对海藻酸钠的NHS酯分子修饰和双层结构设计,构建了可程控卷曲成管并自粘合封闭的多功能天然多糖水凝胶基自适应生物界面(HAB)。
基于HAB双层水凝胶间的溶胀差异,HAB在遇水或含水的生理溶液中,可从初始的薄膜形态自发卷曲成管状;通过调控水凝胶双层的不同厚度比,还可按需调整所形成微管的管径。此外,基于NHS酯分子修饰海藻酸盐与壳聚糖之间极强的分子间相互作用(氢键和共价键),该HAB的这两种水凝胶可在含水环境下乃至水下实现快速(<10 s)、稳定(界面粘合韧性>300 J·m-2)粘合。鉴于其程控形变和快速湿粘合功能,HAB能够在卷曲后形成自封口的微管。同时,这种无需任何外力塑形得到的凝胶微管在远高于主动脉径流流速的血液高流速剪切冲击或生理溶液的长时间浸泡下,仍能够保持理想的结构稳定性。
此外,由于其天然多糖水凝胶组分,HAB还呈现了优异的生物相容性和生物活性:不但可支持细胞在其表面极高的细胞活性和增殖能力,还可有效支持细胞在其表面形成粘着斑并进一步支持细胞间联接的充分形成,预示了其在支持组织再生修复方面的潜力。
研究人员进一步验证了HAB作为自适应生物界面与高表面曲率(2.8×102~1.3×103 m-1)的多种生物组织共形、稳定整合的能力。特别是,在湿润生理条件触发下,该HAB即可实现与小口径血管的共形、稳定无缝整合,在无外力塑形且无缝合下,重新连接两段断裂的血管。整合后的界面剪切强度>70 kPa,并可承受类似主动脉径流流速的高流速血液(85 mm·s-1)剪切冲击。
该研究实现了与高曲率组织的共形、稳定且生物相容的界面适配,对于促进组织工程支架和神经电子等植入式生物医用材料/器械的生物界面适配以增强其植入后的安全性和功能可靠性提供了创新策略和思路。上述研究工作得到国家重点研发计划、国家自然科学基金、中科院青年创新促进会、广东省、深圳市等科技项目的支持。

图1 多糖水凝胶基自适应生物界面(HAB)通过可控形变和快速湿粘合,实现与高表面曲率生物组织如小口径血管的免缝合、共形、稳定整合
© 1996 - 中国科学院 版权所有 京ICP备05002857号-1
京公网安备110402500047号 网站标识码bm48000002
地址:北京市西城区三里河路52号 邮编:100864
电话: 86 10 68597114(总机) 86 10 68597289(总值班室)








