加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 科研进展

近代物理所在合金钢的耐液态铅铋腐蚀性能方法研究中获进展

2022-04-28 近代物理研究所
【字体:

语音播报

  以铅或铅铋共晶合金(LBE)作为冷却剂的铅冷快堆,具有优良的中子物理特性、热工水力特性及安全特性,成为第四代核反应堆的六种推荐堆型之一。然而,冷却剂LBE与结构材料的相容性问题成为制约铅冷快堆发展的主要因素之一。 

  近日,中国科学院近代物理研究所利用喷丸处理工艺使铁素体/马氏体钢SIMP表面纳米化,探究了其在550℃饱和氧液态LBE中的腐蚀行为。 

  研究显示,腐蚀1218小时后,表面纳米化钢表面生成的氧化膜厚度为28 μm,而原始钢表面生成的氧化膜厚度为37 μm,表明表面纳米化可显著提升铁素体/马氏体钢的抗LBE腐蚀性能。这主要归功于两个因素:喷丸处理引入的大量晶界显著增强了铬原子的扩散系数,使保护性的铬-氧化物在氧化早期得以迅速生成,从而降低了氧化速率;喷丸样品表面生成的磁铁矿比原始样品的晶粒尺寸更小,且更加致密,从而降低了氧原子的向内扩散和铁原子的向外扩散速率。 

  研究还发现,表面纳米化钢的氧化层与基体的结合强度更高。这主要得益于表面纳米化钢的外氧化层相比原始钢更加致密,铅的渗透程度更低。此外,较小的晶粒尺寸和铁-铬尖晶石中较高的铬含量促使表面纳米化钢的氧化层相比原始钢具备更高的结合强度。 

  该研究为提升铅冷快堆结构材料的耐LBE腐蚀性能提供了重要的技术工艺,对提高结构材料的服役性能具有重要意义。相关研究成果发表在Applied Surface Science上。研究工作得到国家自然科学基金和中科院科研装备研制项目的支持。 

  论文链接 

1.550℃饱和氧液态LBE中腐蚀120 h后(a)原始和(b)表面纳米化SIMP钢表面生成的氧化膜截面SEM图像(马志伟/图) 

2.原始(CG)和表面纳米化(SPSIMP钢表面的氧化膜厚度随腐蚀时间的变化(马志伟/图)    

打印 责任编辑:侯茜

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864

    电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

    编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有
    京ICP备05002857号-1
    京公网安备110402500047号
    网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864
    电话:86 10 68597114(总机)
       86 10 68597289(总值班室)
    编辑部邮箱:casweb@cashq.ac.cn