院况简介
1949年,伴随着新中国的诞生,中国科学院成立。
作为国家在科学技术方面的最高学术机构和全国自然科学与高新技术的综合研究与发展中心,建院以来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全做出了不可替代的重要贡献。 更多简介 +
院领导集体
创新单元
科技奖励
科技期刊
中国科学院学部
中国科学院院部
语音播报
1月20日,中国科学院上海营养与健康研究所李海鹏研究组等在Human Genetics上,在线发表了题为Fine human genetic map based on UK10K data set的研究论文。遗传重组是生命进化的基础,在有性生物形成配子的过程中,来自父方和母方的染色体相互交换遗传物质,从而增加了相邻基因间不同等位基因的组合,丰富了遗传多样性。精确度量基因组不同区域的遗传重组率是生物学研究的热点。精确的遗传重组图谱对探究遗传重组的发生机制、杂交育种、准确定位致病突变和某一性状的决定基因,均非常重要。
遗传重组率估值的精确度与数据囊括的遗传重组次数成正比,若数据囊括了越多的遗传重组事件,则遗传重组率估值越精确,反之亦然。无论是基于家系或单精子测序的研究,还是基于群体遗传数据的研究,这一原则均成立。基于群体遗传数据的分析,局限于已有的分析方法,较难运用以分析大样本。本研究中,科研人员扩展了前期开发的机器学习方法,运用新开发的FastEPRR 2.0分析了公开的UK10K共3,781个非相关个体(n=7,562个基因组)测序数据,基于Out-of-Africa群体历史模型,准确估计了遗传重组率,构建出精确的遗传重组图谱。总体上看,少数已知的遗传重组热点在UK10K遗传图谱中依然存在,但在UK10K遗传图谱中,遗传重组率估值波动较为平缓,遗传重组异质性较低(如图)。为了剖析样本大小对估值的影响,研究从UK10K数据中随机选取2,000、400和200个基因组测序数据,分析结果显示随着样本量的降低,遗传重组率的估值波动加大。上述结论不依赖分析时所用的群体历史模型,研究人员在使用群体数量恒定模型中也观察到同样的现象。该研究提供了精确的人类遗传重组图谱,并发现遗传重组在基因组上的分布或比预期的更均匀。
理论群体遗传学领域拥有完善的数学基础,与机器学习中的黑盒子概念相反。2008年初,研究人员预见有监督的机器学习对群体遗传学的促进作用,因而在2011年与合作者首次将有监督的机器学习引入了群体遗传学(Genetics),并在2013年(Genetics)、2016年(G3)持续发展这一新范式。在某些方面,虽然有监督的机器学习比极大似然法、贝叶斯等方法更好,但是这一新范式能否为进化生物学领域带来新发现,依然未知。结果表明,新范式带来了新发现,也回应了领域中某些质疑意见。
研究工作得到国家自然科学基金、中科院战略性先导科技专项、国家重点研发计划和营养与健康所的支持。
各个遗传重组图谱中遗传重组异质性的统计。如果遗传重组在基因组中均匀分布,此时将不存在任何遗传重组异质性,且对应曲线为对角线;如果基因组中遗传重组异质性越高,则有更多的遗传重组热点,对应曲线越弯曲。
扫一扫在手机打开当前页
© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002
地址:北京市西城区三里河路52号 邮编:100864
电话: 86 10 68597114(总机) 86 10 68597289(总值班室)
编辑部邮箱:casweb@cashq.ac.cn
© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002
地址:北京市西城区三里河路52号 邮编:100864
电话: 86 10 68597114(总机) 86 10 68597289(总值班室)
编辑部邮箱:casweb@cashq.ac.cn
© 1996 - 中国科学院 版权所有
京ICP备05002857号-1
京公网安备110402500047号
网站标识码bm48000002
地址:北京市西城区三里河路52号 邮编:100864
电话:86 10 68597114(总机)
86 10 68597289(总值班室)
编辑部邮箱:casweb@cashq.ac.cn