主要职责
中国科学院贯彻落实党中央关于科技创新的方针政策和决策部署,在履行职责过程中坚持党中央对科技工作的集中统一领导。主要职责是:
一、开展使命导向的自然科学领域基础研究,承担国家重大基础研究、应用基础研究、前沿交叉共性技术研究和引领性颠覆性技术研究任务,打造原始创新策源地。 更多+
院况简介
中国科学院是国家科学技术界最高学术机构、国家科学技术思想库,自然科学基础研究与高技术综合研究的国家战略科技力量。
1949年,伴随着新中国的诞生,中国科学院成立。建院70余年来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全作出了不可替代的重要贡献。 更多+
院领导集体
科技奖励
科技期刊
科技专项
科研进展/ 更多
工作动态/ 更多
工作动态/ 更多
中国科学院学部
中国科学院院部
语音播报
近期,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室研究员张文富、赵卫课题组与北京大学物理学院、纳光电子前沿科学中心、人工微结构和介观物理国家重点实验室教授肖云峰、龚旗煌院士课题组合作,在集成微腔光频梳领域取得进展。该研究利用合成势阱场,首次在单个微谐振腔中实现了具有32种重复频率的孤子晶体光频梳,其重复频率覆盖了多个射频波段和太赫兹波段。
近年来,集成微腔光频梳技术已取得长足进步,在激光雷达、相干通信、精密光谱、微波光子学、集成光钟和量子光源等领域展示出优势。然而,微腔孤子的产生通常具有随机性,为集成光频梳实际应用带来挑战。为此,研究人员引入外部控制光场,通过其与泵浦光拍频形成的腔内光场势阱,实现了对孤子的捕获和操控,从而得到腔内孤子等间隔排布的合成孤子晶体光频梳(也称为完美孤子晶体光频梳)。合成孤子晶体光频梳的实现打破了微腔尺寸对孤子光频梳重复频率的限制,例如,在一个自由光谱范围为49 GHz微腔内实现了高达1.57 THz重复频率的孤子光频梳;孤子晶体排布的有序性使梳齿功率得到提升,如N孤子晶体光梳总功率相对于单孤子增强了N倍,其单根梳齿功率则增强了N2倍,为高功率微腔光频梳应用奠定了基础。
此外,该研究还揭示了一种不同于传统微腔呼吸孤子的新型孤子受迫振荡现象,其来源于合成光场势阱和孤子脉冲的群速度差;通过调谐控制光束的频率,可实现对振荡频率的人为调控。另外,由于微腔内存在热光效应,孤子的重复频率也将在小范围内实现精细调谐。以单孤子光频梳为例,该研究实现了孤子受迫振荡频率~20 MHz、重复频率~60 kHz的连续调谐,为精密调谐孤子重复频率提供了新方案。
该研究首次将合成的微腔势阱场引入微腔孤子光频梳实验研究,为微腔孤子脉冲的操控与转换提供了新思路;实验实现的可重构合成孤子晶体光频梳对5G无线通信、激光雷达和高纯度微波源等应用具有重要意义。相关研究成果以《可任意合成的孤子晶体》(Synthesized soliton crystals)为题,在线发表在《自然-通讯》(Nature Communications)上。西安光机所博士卢志舟(2020届毕业)和副研究员王伟强、北京大学博士研究生陈豪敬(2019级)和姚璐(2019级)为论文的共同第一作者,张文富和肖云峰为论文的共同通讯作者,美国弗吉尼亚大学助理教授易煦在实验设计和理论建模等方面提供了重要指导。研究工作得到中科院战略性先导科技专项(B类)、国家重点研发计划、国家自然科学基金等的资助。

图1.任意合成孤子晶体示意图

图2.(a)实验装置图;(b)蝶形封装后的高品质因子集成微腔图;(c)孤子晶体光谱图,其中数字表明孤子晶体包含的孤子脉冲个数,虚线表示特征拟合包络
扫一扫在手机打开当前页
© 1996 - 中国科学院 版权所有 京ICP备05002857号-1
京公网安备110402500047号 网站标识码bm48000002
地址:北京市西城区三里河路52号 邮编:100864
电话: 86 10 68597114(总机) 86 10 68597289(总值班室)








