主要职责
中国科学院贯彻落实党中央关于科技创新的方针政策和决策部署,在履行职责过程中坚持党中央对科技工作的集中统一领导。主要职责是:
一、开展使命导向的自然科学领域基础研究,承担国家重大基础研究、应用基础研究、前沿交叉共性技术研究和引领性颠覆性技术研究任务,打造原始创新策源地。 更多+
院况简介
中国科学院是国家科学技术界最高学术机构、国家科学技术思想库,自然科学基础研究与高技术综合研究的国家战略科技力量。
1949年,伴随着新中国的诞生,中国科学院成立。建院70余年来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全作出了不可替代的重要贡献。 更多+
院领导集体
科技奖励
科技期刊
科技专项
科研进展/ 更多
工作动态/ 更多
工作动态/ 更多
中国科学院学部
中国科学院院部
语音播报
目前,雨生红球藻(Haematoccocus pluvialis)是被用来生产天然虾青素的重要藻种之一,但雨生红球藻在培养过程中易被一种病原真菌Paraphysoderma sedebokerensis寄生(图1A)。因缺少真菌感染藻细胞机理的研究,研发人员难以制定高效科学的真菌污染防治策略,需要耗费人力、物力以监控藻的培养过程,一旦污染发生会造成经济损失。另外,藻-菌互作在水生生态系统中水华藻的爆发和消亡、浮游生物群落多样性以及碳氮的转化与循环等方面也起到一定作用,但由于受藻-菌互作认识的限制,真菌对生态系统的影响较难被计算和评估。
近日,中国科学院水生生物研究所藻类生物技术和生物能源研发中心(CMBB)在真菌寄生雨生红球藻的机制上取得研究进展。该团队利用单细胞寄生真菌(P. sedebokerensis)和单细胞雨生红球藻,建立了病原微生物-藻类的双转录组学研究模型,分析了二者互作过程中基因的表达差异(图1B);利用代谢表型和细胞学实验方法等分析了真菌的碳代谢特征和藻细胞的生化组成(图1C),解析了P. sedebokerensis穿透雨生红球藻细胞壁的作用机制(图2)。
研究表明,真菌P. sedebokerense在感染雨生红球藻的早期产生一系列水解酶类、丝氨酸内切肽和氧化还原酶等,同时雨生红球藻上调表达包括激酶、膜组成结构、ATP转运酶、胁迫反应相关酶和氧化还原酶等与早期防卫反应相关的基因(图1B)。真菌分泌多糖水解酶类(CAZymes)如glucannase和mannanase来降解细胞壁多糖,有助于穿透雨生红球藻的特殊细胞壁mannan结构(图1C),而释放的甘露寡糖(Oligosaccharides)进一步促进真菌对雨生红球藻的寄生过程(图2),这也是真菌专一性寄生雨生红球藻的原因。在此基础上,研究利用多糖水解酶抑制剂可有效地抑制真菌对雨生红球藻细胞的感染。该研究为藻类培养过程中的污染防治工作提出了新的控制方法,也为今后筛选抗真菌感染的优良藻种提供了思路。
相关研究成果以Interaction between the cell walls of microalgal host and fungal carbohydrate‐activate enzymes is essential for the pathogenic parasitism process为题,发表在Environmental Microbiology上,水生所藻类生物技术和生物能源研发中心博士后林娟为论文第一作者,研究员韩丹翔和胡强为论文通讯作者。研究工作得到国家自然科学基金和淡水生态与生物技术国家重点实验室开放课题的资助。
真菌寄生雨生红球藻的过程

图1.真菌和雨生红球藻互作。A、真菌寄生雨生红球藻的过程;B、真菌P. sedebokerense(PS)寄生雨生红球藻H. pluvialis(HP)的双转录组学研究;C、不同水解酶和真菌释放的雨生红球藻细胞壁糖分析

图2.真菌P. sedebokerense寄生雨生红球藻H. pluvialis的机制。AS, ameboid swarmer of P. sedebokerensis CMBB;PR, putative parasitism-related proteins (indicated by the blue dot) in P. sedebokerense
© 1996 - 中国科学院 版权所有 京ICP备05002857号-1
京公网安备110402500047号 网站标识码bm48000002
地址:北京市西城区三里河路52号 邮编:100864
电话: 86 10 68597114(总机) 86 10 68597289(总值班室)








