主要职责
中国科学院贯彻落实党中央关于科技创新的方针政策和决策部署,在履行职责过程中坚持党中央对科技工作的集中统一领导。主要职责是:
一、开展使命导向的自然科学领域基础研究,承担国家重大基础研究、应用基础研究、前沿交叉共性技术研究和引领性颠覆性技术研究任务,打造原始创新策源地。 更多+
院况简介
中国科学院是国家科学技术界最高学术机构、国家科学技术思想库,自然科学基础研究与高技术综合研究的国家战略科技力量。
1949年,伴随着新中国的诞生,中国科学院成立。建院70余年来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全作出了不可替代的重要贡献。 更多+
院领导集体
科技奖励
科技期刊
科技专项
科研进展/ 更多
工作动态/ 更多
工作动态/ 更多
中国科学院学部
中国科学院院部
语音播报
瑞士巴塞尔大学和苏黎世联邦理工学院研究团队取得一项突破:他们通过激光束成功实现了一种特殊铁磁体的极性翻转。这项进展为未来开发可调谐的光电子电路提供了潜在可能。研究发表于最新一期《自然》杂志。
铁磁体中的磁力源于电子自旋的有序排列。每个电子的自旋都会产生微弱磁场,当所有电子自旋方向趋于一致时,材料整体便呈现出宏观磁性。这种排列通常需要克服内部热运动的无序影响,只有当材料温度低于某一临界值时,铁磁性才能稳定存在。
传统上,若要改变铁磁体的磁极方向,往往需要先将其加热至临界温度以上,使电子自旋得以重新定向,再冷却固定新的磁化方向。然而,此次研究表明,仅通过光照即可实现这一极性翻转过程,无需依赖整体加热。
研究团队使用了一种特殊的层状材料——两层轻微扭曲的二维有机半导体钼二碲化物。在这种材料中,电子可以形成所谓的拓扑态,其特性可通过几何形态类比来理解。如同球体与环面之间的本质区别,拓扑态具有稳定且明确的定义,不易被连续变形所改变。
实验中,团队通过调控使电子在绝缘态与金属态之间转变。由于电子间的强相互作用,在这两种状态下电子自旋均保持平行排列,从而使材料整体表现为铁磁性。关键在于,他们利用激光脉冲实现了整个铁磁体自旋方向的集体翻转。
这一转变是永久性的,并且材料的拓扑性质对翻转的动态过程产生了影响。通过控制激光,团队还能在材料中“绘制”出不同拓扑铁磁态的边界,并实现对其拓扑与磁性的动态调控。
为了验证极性翻转的效果,团队使用另一束较弱激光探测材料表面的反射光特性,通过光学信号辨析出自旋方向的改变。
这项技术为在微芯片上光学写入可重构的拓扑电路开辟了新路径。未来,基于该方法有望制备微型干涉仪等器件,用于极弱电磁场的高精度测量。
扫一扫在手机打开当前页
© 1996 - 中国科学院 版权所有 京ICP备05002857号-1
京公网安备110402500047号 网站标识码bm48000002
地址:北京市西城区三里河路52号 邮编:100864
电话: 86 10 68597114(总机) 86 10 68597289(总值班室)








