加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 每日科学

新型光子芯片能将单色光转为三色光

可作为量子计算和高精度测量新工具

2025-11-21 科技日报 张佳欣
【字体:

语音播报

美国马里兰大学研究团队研制出一种新型光子芯片。这种光子器件可将单色激光光源被动转换为红、绿、蓝三色光,无需任何主动控制或反复优化即可稳定工作。这一突破技术为研究量子计算、高精度频率测量及光学计量提供了新工具。相关成果发表于新一期《科学》杂志。

传统光子器件虽可捕捉和操控光子,实现光子流的分离、引导、放大和干涉,但功能有限且难以批量稳定生产。与普通棱镜只分解光色不同,芯片如果能直接产生输入光中原本不存在的新频率,不仅节省额外激光器占用的空间和能量,还能产生目前尚不存在的光频率。

实现这一功能依赖特殊的非线性光-物质相互作用。但非线性效应非常微弱,为增强效果,科学家使用光子谐振器让光在芯片中循环多次,弱效应叠加即可形成明显效果。不过,单一谐振器生成多种频率仍存在局限。

此前,团队提出使用微小谐振器阵列协同工作的方法,通过数百个微环组成的阵列放大非线性效应,引导光沿边缘传播,并可将脉冲激光转化为多频率光。在最新研究中,团队发现阵列本身就能提高频率转换的成功率,无需主动调节。实验显示,6块同一晶圆上的芯片在输入标准190THz激光后,均产生二、三、四次谐波光,对应红、绿、蓝三色光。而3块单环芯片即便使用嵌入式加热器,也仅一块在有限条件下产生二次谐波。

团队表示,阵列中小环和“超环”之间的不同循环速度,使光在芯片中更容易满足转换条件,相当于被动实现匹配。随着输入光强度增加,芯片还能生成更多频率光,类似此前的多频率光效果。

这一方法对光学计量、频率转换和非线性光学计算中等领域具有广泛影响,无需主动调节即可高效工作,为芯片光源的多功能、批量化应用提供了新思路。

打印 责任编辑:曹旸

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

  • © 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864

    电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

  • © 1996 - 中国科学院 版权所有
    京ICP备05002857号-1
    京公网安备110402500047号
    网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864
    电话:86 10 68597114(总机)
       86 10 68597289(总值班室)