主要职责
中国科学院贯彻落实党中央关于科技创新的方针政策和决策部署,在履行职责过程中坚持党中央对科技工作的集中统一领导。主要职责是:
一、开展使命导向的自然科学领域基础研究,承担国家重大基础研究、应用基础研究、前沿交叉共性技术研究和引领性颠覆性技术研究任务,打造原始创新策源地。 更多+
院况简介
中国科学院是国家科学技术界最高学术机构、国家科学技术思想库,自然科学基础研究与高技术综合研究的国家战略科技力量。
1949年,伴随着新中国的诞生,中国科学院成立。建院70余年来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全作出了不可替代的重要贡献。 更多+
院领导集体
科技奖励
科技期刊
科技专项
科研进展/ 更多
工作动态/ 更多
工作动态/ 更多
中国科学院学部
中国科学院院部
语音播报
瑞士巴塞尔大学研究团队在人工光合作用领域取得重要进展:他们开发出一种新型人工分子,能够模仿植物自然的光合作用机制,在光照条件下同时储存两个正电荷和两个负电荷。这一成果为未来将太阳能转化为碳中和燃料提供了新的可能性。相关论文发表于最新的《自然-化学》杂志。
在自然界中,植物通过光合作用利用阳光的能量,将二氧化碳和水转化为富含能量的糖类分子。这些有机物不仅为植物自身提供能量,也成为整个食物链的基础。当动物或人类消耗这些碳水化合物,将其“燃烧”以获取能量时,会释放二氧化碳,从而形成一个闭合的碳循环。科学家正试图模仿这一过程,利用阳光合成氢气、甲醇或汽油等高能燃料,这类“太阳能燃料”在使用过程中释放的二氧化碳等于其生产时所吸收的量,因此可实现碳中和,是未来清洁能源的重要方向。
一种具有特殊结构的分子,是此次实现人工光合作用的关键一步。该分子由5个功能单元串联组成,每一部分承担特定任务。分子的一端包含两个可释放电子的单元,在失去电子后带正电;另一端有两个可接收电子的单元,获得电子后带负电;中间则是吸收光能、启动电子转移反应的核心结构。
团队采用两步光照的方法实现四电荷的存储:第一道闪光激发分子,触发电子转移,产生一对正负电荷,并分别迁移到分子两端;随后第二道闪光再次引发相同反应,使分子最终携带两个正电荷和两个负电荷。这种分步激发机制使得该过程可以在较弱的光照条件下进行,接近自然阳光的强度,而此前类似研究往往依赖高强度激光,难以应用于实际环境。
更重要的是,这些分离的电荷在分子中能够保持相对稳定状态,持续足够长时间,以便参与后续的化学反应,例如将水分解为氢气和氧气——这是生产太阳能燃料的关键步骤。
这一分子成功实现了多电荷分离与储存这一核心功能。团队成员表示,他们已经识别并实现了整个拼图中的一个重要部分。
这项研究深化了人们对人工光合作用中电子转移机制的理解,也为未来设计更高效、更接近自然系统的太阳能燃料转化技术奠定了基础。其成果能为可持续能源的发展开辟新路径,推动人类向绿色、碳中和的能源目标迈进。
扫一扫在手机打开当前页
© 1996 - 中国科学院 版权所有 京ICP备05002857号-1
京公网安备110402500047号 网站标识码bm48000002
地址:北京市西城区三里河路52号 邮编:100864
电话: 86 10 68597114(总机) 86 10 68597289(总值班室)








