主要职责
中国科学院贯彻落实党中央关于科技创新的方针政策和决策部署,在履行职责过程中坚持党中央对科技工作的集中统一领导。主要职责是:
一、开展使命导向的自然科学领域基础研究,承担国家重大基础研究、应用基础研究、前沿交叉共性技术研究和引领性颠覆性技术研究任务,打造原始创新策源地。 更多+
院况简介
中国科学院是国家科学技术界最高学术机构、国家科学技术思想库,自然科学基础研究与高技术综合研究的国家战略科技力量。
1949年,伴随着新中国的诞生,中国科学院成立。建院70余年来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全作出了不可替代的重要贡献。 更多+
院领导集体
科技奖励
科技期刊
科技专项
科研进展/ 更多
工作动态/ 更多
工作动态/ 更多
中国科学院学部
中国科学院院部
语音播报

氢纳米团簇展示了“超流体”特性(艺术图)。图片来源:日本理化学研究所
一个国际科研团队首次在实验环境中观察到低温条件下氢纳米团簇展示出“超流体”特性,这意味着氢原子能够在没有阻力的情况下流动。在此之前,这种量子状态仅在氦中被观测到。详细成果发表在最新一期《科学进展》杂志上。
该团队指出,这一发现极大地增强了人们对量子流体的理解,并可能推动更高效的氢储存和运输方法的发展,从而进一步促进氢能经济的进步。
早在1936年,科学家就发现了氦在低温环境下具有“超流体”特性,即氦原子能够无摩擦地穿过非常狭窄的通道。1972年,诺贝尔奖得主、苏联物理学家维塔利·金兹堡预测,液态氢也可能会展示出相似的“超流体”特性。然而,由于氢在零下259摄氏度时会变成固体,因此一直未能直接观察到它的“超流体”特性。
在最新研究中,由加拿大不列颠哥伦比亚大学、日本理化学研究所和金泽大学团队创建了一个纳米级的极冷实验室环境。他们将少量的氢分子封闭在温度低至零下272.25摄氏度的氦纳米液滴中,确保即使在如此低温下氢也能维持液态。然后,通过将甲烷分子嵌入这些氢团簇内,并使用激光脉冲使它们旋转。
实验结果表明,当大约15到20个氢分子形成团簇时,甲烷分子可以在其中毫无阻力地自由旋转,这标志着氢转变为了“超流体”。而且,实验观测的数据与理论预测完美匹配。
作为一种清洁且可再生的能源,氢燃烧后的产物只有水,不会产生任何污染物或温室气体,因此被誉为“终极能源”。然而,氢的生产、储存和运输仍然是亟待解决的重大挑战。此次关于氢“超流体”特性的发现为开发更加有效的氢运输和储存技术提供了新的可能性。
扫一扫在手机打开当前页
© 1996 - 中国科学院 版权所有 京ICP备05002857号-1
京公网安备110402500047号 网站标识码bm48000002
地址:北京市西城区三里河路52号 邮编:100864
电话: 86 10 68597114(总机) 86 10 68597289(总值班室)








