加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 每日科学

新法能高效灭活抗生素抗性基因

2019-12-19 科技日报 刘海英
【字体:

语音播报

  美国加州大学圣地亚哥分校研究团队16日在《自然·通讯》上发表论文称,他们开发出一种新型基因驱动系统Pro-AG,能有效灭活赋予细菌抗生素抗性的基因,其效率比使用CRISPR系统对照方法高百倍。

  抗生素的广泛使用导致了环境中抗生素耐药性细菌的流行。有证据表明,这些环境中的抗生素耐药性来源会传播给人类。专家预测,在未来几十年中,抗生素耐药性的威胁可能会急剧增加,如果不加控制,到2050年可导致每年约1000万人因耐药性细菌相关疾病而死亡。

  细菌中赋予抗生素抗性的基因通常携带在被称为质粒的环状DNA分子上。质粒可以独立于细菌基因组复制,携带抗生素抗性基因的质粒的拷贝可以存在于每个细胞中,并具有在细菌之间转移抗生素抗性的能力。使用CRISPR系统对这些质粒进行定点剪切编辑,破坏质粒,可将抗生素抗性降低约100倍。Pro-AG系统则采用了一种高效的剪切—粘贴机制,在将基因盒插入赋予抗生素抗性的基因中之后,Pro-AG元件会通过自我扩增机制复制自身,最终达到大幅降低抗生素抗性的目的。研究人员在论文中指出,Pro-AG系统在高拷贝数质粒上对抗生素抗性标记进行功能失活,其效率是基于CRISPR系统的剪切—破坏方法的100倍。

  除高效编辑高拷贝数质粒外,Pro-AG还可以有效编辑大型质粒和单拷贝基因组靶点,或引入功能基因,这为该系统在生物技术或生物医学领域的更广泛应用奠定了基础。

  研究人员表示,Pro-AG技术可用于慢性细菌感染的治疗,帮助治疗如囊性纤维化、慢性尿路感染、结核病等疾病。而与各种现有的递送机制结合,该技术还可以用于去除下水道、鱼塘、饲养场等环境中的抗生素抗性菌株,大幅降低环境中抗生素抗性的发生率。

打印 责任编辑:侯茜

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864

    电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

    编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有
    京ICP备05002857号-1
    京公网安备110402500047号
    网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864
    电话:86 10 68597114(总机)
       86 10 68597289(总值班室)
    编辑部邮箱:casweb@cashq.ac.cn