主要职责
中国科学院贯彻落实党中央关于科技创新的方针政策和决策部署,在履行职责过程中坚持党中央对科技工作的集中统一领导。主要职责是:
一、开展使命导向的自然科学领域基础研究,承担国家重大基础研究、应用基础研究、前沿交叉共性技术研究和引领性颠覆性技术研究任务,打造原始创新策源地。 更多+
院况简介
中国科学院是国家科学技术界最高学术机构、国家科学技术思想库,自然科学基础研究与高技术综合研究的国家战略科技力量。
1949年,伴随着新中国的诞生,中国科学院成立。建院70余年来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全作出了不可替代的重要贡献。 更多+
院领导集体
科技奖励
科技期刊
科技专项
科研进展/ 更多
工作动态/ 更多
工作动态/ 更多
中国科学院学部
中国科学院院部
语音播报
据美国物理学家组织网近日报道,瑞士研究人员开发出一种“纳米阀门”,能在纳米尺度上控制微细管道里单个粒子的运动,有望用于研究纳米粒子的性质,帮助开发新型材料和药物。
该技术由瑞士苏黎世联邦理工大学研究团队开发。他们在新闻公报中说,这种阀门适用于金属或半导体纳米粒子、病毒微粒、脂质体、抗体分子等多种微粒,在材料、化学和生物医学等领域都将找到用武之地。
在纳米尺度上,物质的性质与宏观状态下大不相同,其运动无法用机械阀门控制。据研究人员介绍,为了打开和关闭超薄通道中的纳米颗粒流,他们用到了电力。他们在硅芯片上蚀刻出直径为300纳米—500纳米的通道,将需要安装阀门的部位收窄,并在这个“瓶颈”外侧安装电极。施加特定的电场,能对通道中的微粒产生作用力,决定它能否通过“瓶颈”。
实验显示,纯水中的纳米粒子平时无法通过“瓶颈”,对于这些粒子来说,阀门处于关闭状态;施加电场则可使粒子通过“瓶颈”,相当于阀门打开。然而,对于盐溶液中的纳米粒子,情况刚好相反,阀门平时是打开的,施加电场后关闭。在实际应用中,盐溶液中的病毒、抗体等生物粒子可以被轻易操控。
研究人员利用带阀门的三叉管道,使混在一起的两种纳米粒子流向不同的出口,实现分离。这意味着,设计出相应的管道系统和电场,能筛选、过滤特定性质的粒子。他们还成功地将单个粒子引导到两个阀门之间的区域,将其禁锢在狭小空间内,这能减少粒子无规则运动的干扰,便于观测粒子性质。
研究人员还与苏黎世大学的科学家一起,成功使用该系统操控直径仅10纳米的半导体粒子和抗体微粒。
相关论文发表于最新一期英国《自然·纳米技术》杂志。
扫一扫在手机打开当前页
© 1996 - 中国科学院 版权所有 京ICP备05002857号-1
京公网安备110402500047号 网站标识码bm48000002
地址:北京市西城区三里河路52号 邮编:100864
电话: 86 10 68597114(总机) 86 10 68597289(总值班室)








