加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 传媒扫描

【中国科学报】研究实现高效太阳能光电催化辅酶再生

2024-06-12 中国科学报 孙丹宁
【字体:

语音播报

近日,中国科学院大连化学物理研究所李灿院士、丁春梅副研究员等通过耦合硫化镍电催化剂和分子催化剂,实现同时高效光电催化NAD(P)H辅酶再生,并揭示了其中的协同质子耦合电子转移机制,仿生模拟了酶催化NAD(P)+还原功能等。相关成果发表于《美国化学会志》。

自然光合作用中,光系统II将水氧化,产生的电子和质子在光系统I末端的FNR酶催化作用下被储存为NADPH还原力和ATP能量货币,进而实现酶催化二氧化碳还原等暗反应。李灿团队师法自然,长期致力于光催化和光电催化人工光合成研究,提出“人工光反应+仿生暗反应”的人工光合成策略,通过光反应将能量储存在电荷传输媒介分子或离子中,与下游暗反应耦合,以实现高值化学品或太阳燃料的可控合成。

NAD(P)H辅酶是重要的电荷传输介质和能量载体,NAD(P)H给出电子和质子后自身变为氧化态NAD(P)+,如何通过人工催化实现高效NAD(P)H再生循环一直是个难题。

团队通过耦合硫化镍电催化剂和均相Rh分子催化剂,发现硫化镍作为协同质子耦合电子转移媒介体可促进Rh-H活性物种形成,巧妙模拟了酶催化NADP+还原的功能和机制,实现同时高活性、高选择性光电催化NAD(P)H再生,1,4-NAD(P)H选择性大于99%,转化率100%。

基于此,团队建立了通过耦合质子还原电催化剂(硫化物或金属)和均相分子催化剂进行高效光电催化NAD(P)H再生的普适性策略,并验证了光电催化再生的NAD(P)H可用于氢化暗反应。

这一成果为后续耦合酶催化暗反应、构建集成人工光合成体系奠定了重要基础。

相关论文信息:https://doi.org/10.1021/jacs.4c00994

(原载于《中国科学报》 2024-06-12 第1版 要闻)
打印 责任编辑:梁春雨

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

  • © 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864

    电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

  • © 1996 - 中国科学院 版权所有
    京ICP备05002857号-1
    京公网安备110402500047号
    网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864
    电话:86 10 68597114(总机)
       86 10 68597289(总值班室)