加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 传媒扫描

【中国科学报】植物“自我调节”磷吸收也会“一石二鸟”

2021-10-14 中国科学报 李晨 黄辛
【字体:

语音播报

该论文登上《细胞》封面。受访者供图 

  磷是植物生长发育必需的三大营养元素之一。植物能根据自身的磷营养状态调控其与丛枝菌根真菌之间的共生,这被称为菌根共生的“自我调节”。但“自我调节”的分子机制是什么,一直困扰着科学家。

  10月12日,中国科学院分子植物科学卓越创新中心王二涛研究团队在《细胞》上发表封面论文称,首次绘制了水稻—丛枝菌根共生的转录调控网络,发现植物直接磷营养吸收途径(根途径)和共生磷营养吸收途径(共生途径)均受植物的磷信号网络统一调控,回答了菌根共生领域“自我调节”这一科学问题。

  论文审稿人认为,这项研究结果具有原创性且非常有趣,是菌根共生研究领域的一次重大突破。

  古老共生为植物提供七成磷

  磷是植物体重要的组成成分,广泛参与植物体内众多酶促反应及细胞信号转导过程。在农业生产中,为提高农作物产量,目前主要依靠大量施加氮肥和磷肥实现增产,但这样做也造成了严重的环境污染。

  王二涛介绍,植物主要通过两种途径获取营养。

  一是植物根系直接从土壤吸收营养,即根途径。这时,植物在感知土壤中的氮、磷等营养元素浓度后,通过根的外表皮层和根毛细胞直接从土壤中吸收营养元素。二是植物通过与菌根真菌共生,从外界环境中获取营养,即共生途径。

  “丛枝菌根真菌提供给宿主植物的磷元素占宿主植物总磷获取量的70%以上。”王二涛说,丛枝菌根共生是最普遍的一种共生,是植物从环境中高效获取营养的重要途径。

  相关研究表明,植物和丛枝菌根真菌建立共生关系,与植物由水生向陆生进化发生在同一时期。这既是自然界中最古老的共生关系,也是植物适应陆地环境关键事件之一。

  “自我调节”机制之谜

  王二涛研究组2017年发表在《科学》的研究工作表明,在菌根共生中,宿主植物以脂肪酸的形式为菌根真菌提供碳源,而菌根真菌会帮助宿主植物增加对磷等营养元素的吸收。

  科学家发现磷酸盐饥饿响应因子(PHR)是调控植物根途径磷元素吸收的核心转录因子。在低磷条件下,PHR能够结合在低磷响应基因启动子的P1BS元件上,激活低磷响应基因的表达,增加植物磷元素的吸收。植物体的磷元素感受器SPX通过与PHR之间的互作,抑制植物的低磷响应。

  那么,这一核心转录因子在间接营养吸收途径中会不会也扮演着一定角色?

  一个开关“管”两种途径

  王二涛告诉《中国科学报》,他们在这项研究中,以水稻菌根共生相关基因的转录调控区域为诱饵,筛选水稻转录因子文库,首次绘制了丛枝菌根共生的转录调控网络,结果鉴定到多个参与调控丛枝菌根共生的转录因子。其中,PHR处于该调控网络的核心。

  进一步研究发现,PHR通过P1BS元件直接调控菌根共生相关基因的表达,从而正向调控水稻—丛枝菌根共生。该研究还发现PHR过量表达植株和磷感受器SPX的突变体都表现出对高磷处理抑制菌根共生的不敏感性,表明高磷是通过PHR-SPX模块抑制菌根共生。

  论文审稿人指出:“作者鉴定了一个整合266个转录因子的菌根共生调控网络,其中PHR处于网络的核心。该成果是菌根共生领域一次巨大的概念突破,为该领域开辟了新的研究方向。”

  论文审稿人认为,该研究提供了控制菌根共生转录调控网络的全面视图,揭示了植物磷信号的关键组分PHR2-SPX1在菌根共生不同阶段的核心作用。

  王二涛表示,通过提高PHR基因的表达,有望达到增加水稻直接吸收磷营养和间接通过丛枝菌根共生磷营养吸收的目的,降低农业磷肥的施用,为农业生产的可持续发展提供新方案。

  专家认为,解析主要作物水稻中菌根共生调控机制,可产生重要的社会影响。希望这项研究能够促进根瘤共生领域开展类似的研究,揭示氮信号和根瘤共生的关系。

  相关论文信息:https://doi.org/10.1016/j.cell.2021.09.030

  (原载于《中国科学报》 2021-10-14 第1版 要闻)
打印 责任编辑:阎芳

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864

    电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

    编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有
    京ICP备05002857号-1
    京公网安备110402500047号
    网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864
    电话:86 10 68597114(总机)
       86 10 68597289(总值班室)
    编辑部邮箱:casweb@cashq.ac.cn