加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 传媒扫描

【科技日报】我国首次建立金属中纳米孔洞俘获氢定量预测模型

2019-07-17 科技日报 吴长锋
【字体:

语音播报

  记者从中科院合肥研究院固体物理研究所获悉,该所刘长松课题组吴学邦与麦吉尔大学宋俊合作,首次建立了体心立方金属中纳米孔洞氢俘获和聚集起泡的定量预测模型,为理解氢致损伤,以及设计新型抗氢致损伤材料提供了可靠的理论基础和工具。该成果日前发表在《自然·材料》杂志上。

  氢极易钻进金属材料的内部,导致材料损伤。例如,在磁约束核聚变反应堆的核心部位,燃料氢同位素极易渗透进保护其他部件的钨金属装甲,与中子辐照产生的纳米孔洞结合,从而形成氢气泡并产生裂纹,最终对材料的结构和服役性能造成致命损伤,危及聚变装置的安全。

  为攻克上述难题,研究人员采用基于密度泛函理论的模拟方法,在原子尺度上获得了精确的氢与纳米孔洞相互作用数据,并结合多尺度模拟方法,进行宏观尺度模拟,从而与实验结果进行对比验证。针对氢在不光滑纳米孔洞内壁上吸附问题,他们以体心立方金属钨为例,通过分析氢的运动轨迹,发现氢总是以单原子形式有次序地吸附在一些特定位置上,氢在复杂的孔洞内壁吸附规律可概括为五类吸附位点及相应的五个吸附能级,从而准确描述氢在不光滑纳米孔洞内壁上的吸附特性。

  基于上述规律,研究人员建立了一个普适的定量模型:内壁上氢的能量取决于吸附点的类型以及内壁上氢的面密度,而芯部氢的能量则由氢的体密度决定。由该模型预测得到的结构和氢俘获能,与模拟计算结果高度一致。

  这项研究建立了氢与纳米孔洞相互作用的定量物理模型,为理解氢致金属材料损伤提供了寻求已久的关键认知。这些金属材料不仅会被用在未来聚变堆第一壁装甲中,助力可控核聚变的实现,也会在氢能源汽车以及航空航天等领域中发挥至关重要的作用。

  (原载于《科技日报》 2019-07-17 01版)

打印 责任编辑:侯茜

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864

    电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

    编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有
    京ICP备05002857号-1
    京公网安备110402500047号
    网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864
    电话:86 10 68597114(总机)
       86 10 68597289(总值班室)
    编辑部邮箱:casweb@cashq.ac.cn