加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 科研进展

微电子所在半导体器件物理领域获进展

2023-05-10 微电子研究所
【字体:

语音播报

  半导体器件存在缺陷态等无序因素,其载流子的输运往往表现为跃迁形式。半导体中的缺陷态种类较为复杂,准确认识并描述半导体器件中的载流子输运及宏观电学特性是领域内的难点和重点。

  低温下半导体器件所广泛表现出的非线性伏安(I-V)特性的具体物理原因是备受关注的话题之一。此前,多数研究将非线性I-V特性归因于电场对半导体材料中的电子跃迁速率的均匀调制效应。这一解释没有解决非线性输运的问题,反而引发了更激烈的争论。 

  中国科学院微电子研究所微电子器件与集成技术重点实验室刘明院士团队从理论方面提出了载流子的集体输运效应”(collective transport的物理机制。该理论认为外电场所导致的非均匀分布的渗流路径生长产生了collective transport效应,进而在器件尺度上导致非线性的I-V特性。在实验方面,该团队进一步在聚合物器件中,通过巧妙地控制半导体的维度实现了对器件渗流阈值的控制,并在此基础上通过对器件I-V非线性程度的控制直接证实了非线性输运来源于collective transport这一假设。该工作实现了关于上述话题互存争议的各种假设的统一,为发展操控半导体器件I-V特性的方法提供了理论依据。 

  相关研究成果以Collective Transport for Nonlinear Current-Voltage characteristics of Doped Conducting Polymers为题,发表在《物理评论快报》【Physical Review Letters 130, 177001 (2023)】上

  a.collective transport模型,b.电场驱动渗流路径的形成,c.实验观测到维度控制的非线性输运,d.基于collective transport理论仿真维度控制的非线性输运。

打印 责任编辑:侯茜

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864

    电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

    编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有
    京ICP备05002857号-1
    京公网安备110402500047号
    网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864
    电话:86 10 68597114(总机)
       86 10 68597289(总值班室)
    编辑部邮箱:casweb@cashq.ac.cn