加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 科研进展

深圳先进院微锥阵列神经界面研究获进展

2020-07-29 深圳先进技术研究院
【字体:

语音播报

  近日,中国科学院深圳先进技术研究院医工所纳米调控与生物力学研究中心杜学敏团队、脑所脑图谱中心鲁艺研究团队合作,研发出具有微锥阵列结构的神经接口器件,能显著促进神经元突触的贴附和攀爬(类爬山虎行为)和周期性神经元网络构建,极大提高了神经器件植入后的生物相容性与有效性,并为神经元网络重建与功能调节提供全新策略与方法。

  神经刺激技术因对神经系统疾病(如帕金森症、癫痫、失明和抑郁等)的治疗有显著效果而备受关注。传统植入式神经器件通常采用金属、有机物和高分子等复合材料制备,但因其与生物组织性能相差较大,植入后易被视为异物而引起炎性反应,最终导致器件被纤维化组织包裹以及植入体周围神经元的死亡。上述问题显著影响了神经器件在慢性植入过程中的性能,严重阻碍了神经刺激技术的广泛应用。因此,如何减轻神经器件界面的炎性反应并实现长期有效的刺激,是植入式神经器件亟待解决的关键问题。

  针对现有挑战,深圳先进院研究团队提出通过神经器件表面形貌调控进而实现有效抗炎性反应功能。基于前期微纳结构精准调控与通过微纳结构形貌动态调控细胞行为的研究基础,研究团队采用胶体晶体刻蚀方法制备出仿玫瑰花瓣表面独有的微锥阵列结构,并将这类结构设计到神经器件表面。通过原代神经细胞培养实验,研究发现神经器件界面的微锥阵列结构与神经元胞体尺寸接近,因而能有效促进神经元细胞的粘附;其表面特殊的微纳形貌显著促进了神经元突触的攀附和生长,并形成独特的周期性神经网络。结合慢性植入实验,研究团队还发现这类结构同时能阻碍星型胶质细胞的贴附和组织包囊的形成,进而证实了具有微纳形貌的植入式神经器件具有优异的抗炎功能。该研究通过独特的物理结构有效降了低炎性反应并促进了神经元网络化,不仅为神经器件长期植入并有效刺激提供保障,而且也为重建神经元网络及调节神经功能提供全新策略与方法。

  相关成果以Bioinspired microcone-array-based living biointerfaces: enhancing the anti-inflammatory effect and neuronal network formation为题,发表在Microsystems & Nanoengineering 上。研究得到国家重点研发计划、国家自然科学基金、中科院青年创新促进会、广东省、深圳市等资助。

  论文链接 

表面设计有微锥阵列结构的神经接口器件有效降低炎性反应并促神经元网络化

打印 责任编辑:程博

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864

    电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

    编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有
    京ICP备05002857号-1
    京公网安备110402500047号
    网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864
    电话:86 10 68597114(总机)
       86 10 68597289(总值班室)
    编辑部邮箱:casweb@cashq.ac.cn