加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 科研进展

中国科大等提出“矛与盾”式生物竞争启发的高韧性微结构力学设计方案

2020-06-29 中国科学技术大学
【字体:

语音播报

  生物界“矛”与“盾”式的捕食者与被捕食者之间的生存战争启发人们,调控材料微结构是结构材料获取超常力学性能的重要途径。受自然界“螳螂虾锤击贝壳”的捕食现象启发,中国科学技术大学教授倪勇、何陵辉研究团队与合作者,将螳螂虾内的扭转结构与贝壳珍珠层内的“砖泥”交错结构相结合,利用3D打印技术,设计了一种高断裂韧性和对裂纹取向不敏感的非连续纤维扭转复合结构,并提出断裂力学模型揭示了裂纹取向不敏感、裂纹扭转和纤维桥联协同的增韧机制,给出了具有最优断裂韧性的此类复合材料结构的参数化设计策略。6月22日,相关研究成果以Discontinuous fibrous Bouligand architecture enabling formidable fracture-resistance with crack-orientation insensitivity为题,发表在PNAS上。

  自然界中,捕食者螳螂虾(“矛”)内的扭转结构可促使裂纹偏转增韧,被捕食者贝壳(“盾”)内的“砖泥”交错构型通过砖块滑移促进裂纹桥联增韧,两者都是代表性高韧性生物材料结构。在这场生存战争中,为什么 “矛”通常会战胜“盾”?为什么自然界中生物材料扭转结构具有特定的螺旋角大小和扭转角分布?如何将生物材料的微结构增韧策略应用于高韧性复合材料的研发?

图1.DFB复合材料的3D打印设计及力学测试

图2.DFB复合材料的优化设计策略

  针对上述问题,研究团队将扭转结构和“砖泥”交错结构组合,3D打印设计了一种非连续纤维扭转(DFB)复合结构,系统的断裂实验表明,该结构优异的断裂耗能对初始裂纹取向不敏感,同时在临界螺旋角下断裂耗能最优(图1)。断裂力学分析表明,对裂纹取向不敏感的高断裂韧性起源于DFB结构中的裂纹偏转和桥联协同的混合增韧机制;存在临界螺旋角,裂纹偏转和桥联模式间的协同导致最优断裂耗能(图2)。通过调控螺旋角、纤维长度、扭转角分布和桥联韧性参数,可以实现适应各方向载荷的高韧性纤维复合结构设计。

  该研究揭示了生物材料优异断裂韧性的一种微结构起源,也为高性能先进复合材料的制备提供了新的仿生结构设计思路和性能优化的参数选择原理。

  论文的第一作者为中国科大近代力学系博士吴开金,通讯作者为倪勇。合作者为中国科大教授龚兴龙、中国科学院院士俞书宏、美国加州大学圣地亚哥分校教授Shengqiang Cai。研究工作得到国家自然科学基金面上项目、中科院战略性先导科技专项、中国科大人才培养计划、创新团队培育项目等的支持。

  论文链接 

打印 责任编辑:侯茜

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864

    电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

    编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有
    京ICP备05002857号-1
    京公网安备110402500047号
    网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864
    电话:86 10 68597114(总机)
       86 10 68597289(总值班室)
    编辑部邮箱:casweb@cashq.ac.cn