主要职责
中国科学院贯彻落实党中央关于科技创新的方针政策和决策部署,在履行职责过程中坚持党中央对科技工作的集中统一领导。主要职责是:
一、开展使命导向的自然科学领域基础研究,承担国家重大基础研究、应用基础研究、前沿交叉共性技术研究和引领性颠覆性技术研究任务,打造原始创新策源地。 更多+
院况简介
中国科学院是国家科学技术界最高学术机构、国家科学技术思想库,自然科学基础研究与高技术综合研究的国家战略科技力量。
1949年,伴随着新中国的诞生,中国科学院成立。建院70余年来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全作出了不可替代的重要贡献。 更多+
院领导集体
科技奖励
科技期刊
科技专项
科研进展/ 更多
工作动态/ 更多
工作动态/ 更多
中国科学院学部
中国科学院院部
语音播报
近日,中国科学院精密测量科学与技术创新研究院研究员詹明生团队在异种原子量子比特的相干操控方面取得新进展。该团队首先将他们首次实现的魔幻光强偶极阱(MI-ODT)技术[Phys.Rev.Lett.117,123201(2016)]应用于两种原子并存的异种原子量子比特阵列,并对每一种原子分别实现了秒量级的相干时间。他们进而在MI-ODT中引入激光偏振作为一个新的调控参数,从而在同一组调控参数中达到两种原子都有较长的相干时间,实现了两种类型量子比特叠加态的相干时间均衡,并且均提升到约1 秒。该研究结果近日发表在《物理评论快报》上。
光阱阵列中的中性原子体系展现了极好的扩展性,因此在量子模拟和量子计算中有广阔的应用前景。然而在量子比特的数量扩展以后,难以避免地在量子逻辑操作和量子比特的初始化和状态读出时的串扰问题就突出出来了。一个有效避免串扰的可能的途径是利用异种原子共振频率的差异来建立异种原子量子比特体系。这样的体系既可以用于执行量子计算中不同的任务, 如其中的一种原子量子比特作为纠错码中的校验子,另一种原子作为数据量子比特,如此可能有效地执行纠错并避免串扰;也可以用于量子模拟中,因为额外的操控自由度为多组分多自旋体系的模拟提供了条件。所以异种原子体系在量子模拟、量子计算和量子精密测量等领域都有潜在的广泛的应用前景。
在通往异种原子量子信息的道路上,该团队已于2017年在国际上首次演示了异核两原子间的量子受控非门以及异核两原子的量子纠缠[Phys.Rev.Lett. 119,160502 (2017)]。从同种体系拓展到异种体系的另外一个关键要素是实现相干时间长且均衡的异种原子量子比特的存储,然而至今异种原子量子比特的相干性差异很大,极大地影响制备出来的异种量子纠缠态的寿命,不利于量子信息处理的执行。
最近,副研究员何晓东与博士生郭瑞军等人,进一步发展了MI-ODT方法,成功地实现了异种体系两个3×3交叉排列的偏振协调的魔幻光强偶极阱阵列。异种体系原子魔幻光强囚禁技术依赖于原子的三阶交叉项系数和基态超极化率的可调谐性,而基态超极化率本质上取决于囚禁光场的圆偏振度。实验上,装载85Rb原子的偶极阱阵列的偏振度被精确地调整到一个确定的值,使其魔幻光强囚禁技术所需的补偿磁场等于在另一个完全圆偏振的偶极阱阵列中魔幻光强囚禁87Rb原子量子比特所需的补偿磁场。在这种偏振协调的魔幻光强偶极阱阵列中,85Rb和87Rb原子量子比特叠加态的相干时间分别提高到891±47 ms和943±35 ms。相对于原子的单量子比特和双量子比特逻辑门微秒量级的门操作时间而言,所获得的秒量级的原子内态相干时间满足了通用量子计算机判据中量子比特相干性的要求。
该研究结果是该团队发展的MI-ODT技术在异核体系中的进一步拓展和应用,突显了该原创技术在中性原子量子计算研究中的价值,为构造可扩展长相干时间的异核原子量子信息处理器又往前迈了关键的一步。
该研究得到科技部重点研发计划、国家自然科学基金委和中科院先导专项的资助。

图片说明:偏振协调的异种体系魔幻光强偶极阱阵列中87Rb和85Rb原子内态相干时间随阵列格点位置变化示意图。(a) 两个3×3的偶极阱阵列的交叉排列。(b)多量子比特阵列中,87Rb和85Rb原子内态平均相干时间分别为891±43 ms和943±35 ms。每种偶极阱阵列的格点标记为1到9,其中标记为5的格点用于校准魔幻光强阱阱深。以箭头表示测量相干时间的顺序。
扫一扫在手机打开当前页
© 1996 - 中国科学院 版权所有 京ICP备05002857号-1
京公网安备110402500047号 网站标识码bm48000002
地址:北京市西城区三里河路52号 邮编:100864
电话: 86 10 68597114(总机) 86 10 68597289(总值班室)








