加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 科研进展

海洋水层界面的精细结构与时变特征研究获进展

2020-01-03 南海海洋研究所
【字体:

语音播报

  2019年1014日,中国科学院南海海洋研究所边缘海与大洋地质重点实验室研究员唐群署联合英国三所高校的研究人员,在海洋水层界面的精细结构与时变特征上取得新发现,并以Detecting changes at the leading edge of an interface between oceanic water layers 为题在线发表在《自然-通讯》(Nature Communications)上。

  海洋水团边界处伴随着较为剧烈的相互作用,表现为多样化的运动学与动力学过程。水团内部的层结在前缘交锋处达到一种动态的平衡:因层化而形成,或因湍流而破坏。由于传统海洋观测在空间分辨能力上的不足,加之水团交界处往往比较狭窄,不易获知水团交锋处的精细结构和时变特征。因此,若能观测此类边界处水体层结的精细结构,则有望揭示水团在前缘交锋处的混合机制。

  针对上述问题,研究人员利用高分辨率的(~10米)海洋人工反射地震观测技术,在赤道附近巴拿马海盆的温跃层底部探测到一个水层界面。该研究通过两张同一位置、前后相差约3天的反射地震图像,发现了一个位于560米深、空间连续长达上百公里的水体反射界面(图1),该界面正以4厘米/秒左右的速度生长而变长(图2),并以每3天约0.05℃的速度变得更加成熟。研究人员认为该界面前缘变长/变强的过程对应着该处的湍流扩散正在被双扩散逐步取代的临界过程,即界面的生长机制,从而揭示了该界面所处的海洋环境和经历的海洋过程。

  利用走航式反射地震研究海洋水体的结构与动力过程是近10多年逐步发展的新生交叉学科,契合海洋高效率、高分辨的观测发展趋势。该研究得益于地震方法的快速作业能力,开展海洋现象的时变特征研究;得益于地震方法高分辨的连续观测特性,追踪识别出横向微弱的“水团”边界。该研究实例采用的反射地震的作业方式和研究方法极易推广,同样适用对温盐阶梯、热盐入侵界面的观测,亦适用各类海洋强锋面处的细结构研究。

  该项成果第一兼通讯作者是唐群署,文章其他作者分别是伦敦大学学院(UCLVincent Tong、杜伦大学(Durham UniversityRichard Hobbs、纽卡斯尔大学(Newcastle UniversityMiguel Morales Maqueda。其中唐群署的研究工作得到中科院青年创新促进会的支持。

  论文链接

1:相同地点、前后两次观测到位于560m水深处的同一反射界面

2:反射界面在扣除背景流速(a)(b)后的运动和生长情况

打印 责任编辑:叶瑞优

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864

    电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

    编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有
    京ICP备05002857号-1
    京公网安备110402500047号
    网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864
    电话:86 10 68597114(总机)
       86 10 68597289(总值班室)
    编辑部邮箱:casweb@cashq.ac.cn