加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 科研进展

深圳先进院在纳米尺度电化学性能表征领域取得进展

2019-10-12 深圳先进技术研究院
【字体:

语音播报

  近日,中国科学院深圳先进技术研究院医工所纳米调控与生物力学研究中心在纳米尺度电化学性能表征领域取得新进展。相关成果以Resolving local dynamics of dual ions at the nanoscale in electrochemically active materials(《揭示电化学活性材料在纳米尺度的局域双离子动力学特性》)为题发表在能源期刊Nano Energy(《纳米能源》)上。深圳先进院纳米调控与生物力学研究中心客座博士生余俊熹为论文第一作者,美国华盛顿大学博士生黄博远、湘潭大学博士生李奥林为共同第一作者,深圳先进院纳米调控中心主任李江宇为通讯作者,湘潭大学教授刘运牙、谢淑红为共同通讯作者。

  双离子电池具有高工作电压、长循环寿命、安全、低成本等优势,近年来受到广泛关注,与传统的单离子电池(锂/钠离子电池)相比,双离子电池体系中阴离子和阳离子同时参与反应,反应过程更为复杂,为了充分发挥双离子电池的潜力,需要深入理解纳米尺度阴离子和阳离子相互竞争的微观电化学过程。

  基于此,团队采用具有电化学活性的浮法玻璃作为双离子微观动力学的研究对象,利用电化学应变显微技术(ESM)对其进行了纳米尺度电化学性能表征,并通过有趣的离子弛豫动力学曲线,揭示了双离子体系中存在Vegard电化学应变(Vegard strain)和电化学偶极矩(electrochemical dipoles)相互竞争的微观机制。同时结合相场模拟,定量测量了微观钠离子扩散系数和活化能,并与宏观测试结果一致。该方法不仅能运用于双离子电池中,在卤化钙钛矿太阳能电池、功能氧化物中也具有广泛的应用前景。

  上述工作得到国家重点研发计划纳米科技重点专项和国家自然科学基金仪器研制项目的资助。

  论文链接

Vegard电化学应变和电化学偶极矩相互竞争的微观机制

打印 责任编辑:叶瑞优

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864

    电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

    编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有
    京ICP备05002857号-1
    京公网安备110402500047号
    网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864
    电话:86 10 68597114(总机)
       86 10 68597289(总值班室)
    编辑部邮箱:casweb@cashq.ac.cn