主要职责
中国科学院贯彻落实党中央关于科技创新的方针政策和决策部署,在履行职责过程中坚持党中央对科技工作的集中统一领导。主要职责是:
一、开展使命导向的自然科学领域基础研究,承担国家重大基础研究、应用基础研究、前沿交叉共性技术研究和引领性颠覆性技术研究任务,打造原始创新策源地。 更多+
院况简介
中国科学院是国家科学技术界最高学术机构、国家科学技术思想库,自然科学基础研究与高技术综合研究的国家战略科技力量。
1949年,伴随着新中国的诞生,中国科学院成立。建院70余年来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全作出了不可替代的重要贡献。 更多+
院领导集体
科技奖励
科技期刊
科技专项
科研进展/ 更多
工作动态/ 更多
工作动态/ 更多
中国科学院学部
中国科学院院部
语音播报
8月7日,中国科学院深圳先进技术研究院材料所光子信息与能源材料研究中心杨春雷团队在半导体SERS基底研究方面取得新进展,相关成果以Tunable 3D light trapping architectures based on self-assembled SnSe2 nanoplate arrays for ultrasensitive SERS detection(《基于自组装二硒化锡纳米片阵列的可调陷光结构应用于超灵敏SERS检测》)为题发表在光电磁功能材料期刊Journal of Materials Chemistry C(2019,DOI: 10.1039/C9TC03715B)上。该文章同时被选为2019 Journal of Materials Chemistry C HOT Papers。硕士生李威威和熊磊为论文共同第一作者,通讯作者为副研究员李光元、陈明及研究员杨春雷。
表面增强拉曼散射(SERS)以其超高的灵敏度和无损检测的特点,已经在物理、化学、生物学、医学等领域展现了巨大的应用潜力。目前,传统的SERS基底仍然是金、银、铜等贵重金属材料,然而制作成本高、过程复杂,而且重复性和生物相容性差。
为了克服这些局限性,基于半导体材料的SERS活性基底以其低成本、良好的生物相容性和高稳定性而受到越来越多的关注。然而,与贵金属SERS基底相比,半导体材料SERS基底的增强因子(源于电荷转移机制)相对较弱,不足以用于分子检测,从而阻碍了其实际应用。
采用具有光捕获结构的半导体材料作为SERS 活性基底已引起越来越多的关注,其中光的多次反射和散射可以提高增强因子。然而,这些半导体SERS活性基底的制备通常需要复杂的工艺,并且这些方法通常导致不均匀和分离的颗粒/薄片,这难以满足实际应用中高性能和可靠性的需求。在这里,研究团队证明通过自组装生长的SnSe2纳米片阵列(NPAs)可以作为均匀、高性能和可靠的SERS基底。SnSe2 NPAs形成的微腔阵列可以有效地捕获光(最高可达96%),从而改善增强因子。得益于电荷转移过程和增强的光捕获能力的协同效应,基于SnSe2 NPAs的SERS基底展示出超低检测极限(1×10-12 M)、高增强因子(1.33×106)和极好的均匀性(相对标准偏差降至7.7%),达到甚至超过传统金属SERS基底的性能,是目前报道的具有最高灵敏度之一的半导体SERS基底。此外,文章还系统地研究了不同SnSe2纳米片形成的空间结构(平面与腔体)、SnSe2 NPAs的高度和倾斜角度对SERS性能的影响,研究发现其SERS性能强烈依赖于光捕获能力和吸收损耗。相关研究结果不仅提供了获得可调谐、均匀和高性能SERS基底的有效策略,而且对于设计3D光捕获架构具有重要的指导意义。
该研究得到国家自然科学基金委和深圳市基础研究布局项目等的资助支持。
图1 基于自组装SnSe2纳米片阵列的可调谐陷光结构,光捕获能力最高可达96%。
图2 基于自组装SnSe2 纳米片阵列的SERS基底具有超低的检测极限(1×10-12 M),高增强因子(1.33×106)和极好的均匀性(相对标准偏差降至7.7%)。
© 1996 - 中国科学院 版权所有 京ICP备05002857号-1
京公网安备110402500047号 网站标识码bm48000002
地址:北京市西城区三里河路52号 邮编:100864
电话: 86 10 68597114(总机) 86 10 68597289(总值班室)








