加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 科研进展

广州生物院揭示体细胞重编程的起始分子机制

2019-08-05 广州生物医药与健康研究院
【字体:

语音播报

  近日,中国科学院广州生物医药与健康研究院-马克思普朗克(Max Planck - GIBH)再生生物医学中心Ralf Jauch及其博士生Vikas Malik主导团队揭示了转录因子诱导的体细胞多能性重编程的起始分子机制,阐明了多能性重编程对Oct4和Sox2的时态依赖性,为再生医学和诱导多能干细胞的研究提供新的理论模型。相关研究成果于8月2日发表于《自然-通讯》(Nature Communications)杂志上。

  体细胞多能性重编程技术可通过使用重编程转录因子(主要是Oct4,Sox2和Klf4)将已分化体细胞转化为诱导多能干细胞(iPSC),该技术于2006年首次发表,山中伸弥教授因此成果于2012年获得诺贝尔生理学或医学奖。然而,该技术涉及的确切分子机制仍然有待研究。Jauch团队专注于研究Oct4和Sox2转录因子及其在重编程过程中如何发挥主导作用。通过利用基因组学技术比较野生型和突变体Oct4与Sox2的结合方式后,他们惊讶地发现Sox2而非Oct4是开启体细胞重编程的关键因子。在重编程起始阶段,Sox2“攻击”和“唤醒”体细胞中处于沉默状态的多能性基因,这是激活它们的首要条件。Oct4在这一阶段对体细胞特性的抑制并不重要,扮演着可有可无的角色。然而,为了最终打开相关的基因网络以建立多能性,Sox2和Oct4紧密合作,共同完成这项工作。在重编程后期,Oct4逐渐起主导作用。一旦细胞变成多能干细胞,多能性的维持对Oct4与Sox2结合的依赖性大大降低。而Oct6因结合不同的基因组位点,并且缺乏与Sox2结合的偏向性,因此不能取代Oct4进行多能性重编程。这些发现解答了多能性重编程研究领域的一些争议问题,将为改造Sox2,Oct4及相关因子以更快速、高效和可靠地进行细胞重编程提供方向,为最终实现干细胞和再生医学的临床应用提供可能。

  这项研究由中美德三方科学家合作完成,得到中科院、世界科学院、国家自然科学基金委员会和广东省科学技术厅等多方面的经费支持。

  论文链接

 

广州生物院揭示体细胞重编程的起始分子机制

 

打印 责任编辑:叶瑞优

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864

    电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

    编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有
    京ICP备05002857号-1
    京公网安备110402500047号
    网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864
    电话:86 10 68597114(总机)
       86 10 68597289(总值班室)
    编辑部邮箱:casweb@cashq.ac.cn