加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 科研进展

地质地球所提出生物感磁起源新认识

2019-07-17 地质与地球物理研究所
【字体:

语音播报

  地磁场包裹近地空间,保护地球的大气圈、水圈和生物圈,维系地球宜居环境。地磁场的出现至少始于太古代,甚至在冥古宙就可能起源。在漫长的演化中,许多生物拥有了感应地磁场以及利用地磁场进行定向和导航的能力。越来越多的研究发现,生物感磁行为在现代生物圈中广泛存在,相关研究已成为地学、生物学、物理学、化学等共同关注的前沿科学问题。然而,关于生物感磁行为是如何起源和演化的还知之甚少。微生物是地球上最早出现的生命形式,对于感磁微生物的研究将为破解生物“感磁第六感”的起源之谜提供新思路。

  中国科学院地质与地球物理研究所地球与行星物理院重点实验室研究员林巍、中科院院士潘永信及其合作者发表综述文章,系统总结了以趋磁细菌为代表的感磁微生物研究领域的最新进展。趋磁细菌在细胞内合成纳米级、链状排列的铁磁性颗粒,称为“磁小体”。磁小体作为趋磁细菌特有的“感磁器官”,使该类微生物具有在地磁场中定向运动的能力。研究表明,趋磁细菌起源于中太古代,可能是地球上最早出现的感磁生物,因此是研究生物感磁起源和演化的重要模式生物类群。

  该文章在综述趋磁细菌多样性、起源演化、磁小体功能及其矿化机理等最新研究进展的基础上,提出了一种生物感磁起源的新认识:磁小体的原始功能可能不是感应地磁场,而是作为一种纳米酶以降低早期生命体内的活性氧(ROS)浓度,维持细胞内正常的氧化还原水平,帮助这类微生物适应早期地球的高辐射等极端环境;在随后的演化中,磁小体逐渐具有感磁的新功能。这一演化过程被作者称为微生物感磁的扩展适应。

  作者还对该领域未来的研究方向和存在的挑战提出了展望,包括最早出现的磁小体是何种成分、现生趋磁细菌中磁小体的生理代谢功能、磁小体生物矿化的过程和机理、趋磁细菌对现代和地质历史时期铁元素循环的贡献以及趋磁细菌应用于天体生物学研究等。相关成果有助于更好地理解生物感磁行为的起源和早期演化,也为进一步约束早期地磁场和古海洋环境提供了依据。

  相关成果发表于《国家科学评论》。

  论文链接

趋磁细菌,棕色颗粒为其“感磁器官”磁小体

微生物感磁的扩展适应起源示意图

打印 责任编辑:任霄鹏

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864

    电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

    编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有
    京ICP备05002857号-1
    京公网安备110402500047号
    网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864
    电话:86 10 68597114(总机)
       86 10 68597289(总值班室)
    编辑部邮箱:casweb@cashq.ac.cn