Penetration depth of the hot electrons can be estimated easily. For instance, the conductivity of the hot, dense matter and the parameter that mirrors this complex physics is the giant magnetic backward currents and eventually to the emergence of turbulent structures with respect to the sun and other stellar environments. These parameters are not easily obtainable by other methods. In the present study, we take a further leap by spatially resolving the giant magnetic field on a micrometer scale at each temporal delay. These spatial maps clearly show the filamentary structures of electron currents in the plasma. A spectral analysis of these maps indicates that the magnetic fields are turbulent in nature (18). We use pump-probe Cotton–Mouton polariscopy (15–17, 19) to measure the temporal and spatial evolution of the giant magnetic field (the former on picosecond time scale and the latter on microsecond scale). These polarigrams capture the temporal evolution of the filamentation process and a Fourier analysis of the spatial images clearly shows a broad spectrum with a power-law behavior for the magnetic energy. Our analytical studies and two-dimensional particle-in-cell (2D-PIC) simulations support the broad power-law spectrum and clearly demonstrate the presence of turbulence (20, 21).

Magnetic Field: Temporal and Spatial Profiles

Our measurements of the giant magnetic field (shown by the schematic of Fig. 1) are based on the modification of the polarization state of a weak probe beam (400 nm wavelength, 80 fs duration) launched into the plasma at a certain time delay from the plasma producing pump beam of intensity 10^{18} W/cm2 (800 nm wavelength, 30 fs duration). The plasma is created on an optically planar solid target. The probe beam is reflected from the electron density surface in the plasma that is critical for the 400 nm radiation. From the ellipticity induced in the polarization of the reflected probe beam (19), we infer the magnetic field by solving the Helmholtz equation in the plasma using an appropriate electron density profile and scale length. We also run 2D-PIC simulations for our experimental parameters to back the results and provide a detailed interpretation of the observations.

![Fig. 2](image-url)

Fig. 2 shows the measured time resolved and spatially integrated ellipticity and magnetic field. The ellipticity rises to a maximum of 0.53 in 5.3 ps. The magnetic field increases from 0 to 63 megagauss in 3.2 ps at the critical surface of the probe (400 nm) and starts decreasing beyond this time. Magnetic field strength is along expected lines (1, 2, 15–17). Fig. 2B and C shows the results of our 2D-PIC simulations, which will be discussed a little later.

Fig. 2D shows a typical spatial profile of the magnetic field and Fig. 2E is the corresponding two-dimensional contour plot of the transverse profile of the magnetic field captured at 3.2-ps delay. Note that the transverse dimension of the probe pulse (approximately 60 μm) is approximately three and a half times the transversal dimension of the filamentary structures of the probe pulse. These parameters are not easily obtainable by other methods. In the present study, we take a further leap by spatially resolving the giant magnetic field on a micrometer scale at each temporal delay. These spatial maps clearly show the filamentary structures of electron currents in the plasma. A spectral analysis of these maps indicates that the magnetic fields are turbulent in nature (18). We use pump-probe Cotton–Mouton polariscopy (15–17, 19) to measure the temporal and spatial evolution of the giant magnetic field (the former on picosecond time scale and the latter on microsecond scale). These polarigrams capture the temporal evolution of the filamentation process and a Fourier analysis of the spatial images clearly shows a broad spectrum with a power-law behavior for the magnetic energy. Our analytical studies and two-dimensional particle-in-cell (2D-PIC) simulations support the broad power-law spectrum and clearly demonstrate the presence of turbulence (20, 21).

The terrestrial largest available magnetic fields are generated when an intense laser pulse (intensity above 10^{18} W/cm2) irradiates a solid target (1–3). The high energy density produced by laser irradiation generates relativistic electron jets, through the process of wave breaking. These relativistic electron jets carry the laser energy deep into the target ionizing and heating the colder portions behind the laser generated plasma and exciting return shielding currents. In the laboratory, such heating is extremely important for fast ignition of highly compressed targets in laser fusion (4, 5), simulation of intra planetary matter existing at ultrahigh pressure (6), ultrafast X-ray pulses (7), as well as proton and ion acceleration up to the MeV-GeV levels (3). It also serves as an excellent tool for modeling astrophysical systems (8–10). The transport of relativistic electrons through hot dense matter is very complex and is barely understood (11, 12).

Simulations have shown that relativistic electron transport in plasma media is fraught with severe plasma instabilities particularly the Weibel instability (13), which leads to spatial separation of forward and backward currents and eventually to the emergence of turbulent structures (14) and rapid energy dissipation. A major physical parameter that mirrors this complex physics is the giant magnetic field—as high as hundreds of megagauss—generated in this interaction. In earlier studies (15–17), we have shown that the temporal evolution of this megagauss magnetic field can provide essential and very useful information on the transport process—for instance, the conductivity of the hot, dense matter and the penetration depth of the hot electrons can be estimated easily.
verse dimension of the pump focal spot and thus is suitable for measuring magnetic fields having transverse structures larger than the pump focal spot. The observed magnetic field is cylindrically asymmetric. We believe that this could be partially attributed to the asymmetric radiation forces on the electrons by the laser pulse (22). The obliquely incident laser pulse pushes the electrons along its propagation direction, inducing this asymmetry, seen in all the images (Fig. 3). This feature is also seen in our 2D-PIC simulations (Fig. 2C). The maximization of the magnetic field (over picosecond time scales), long after the incidence of the laser pulse (femtosecond time scale) and its subsequent decay over a period of several picoseconds is similar to that observed in earlier experiments (15–17) and can be understood as follows. The pump laser produces hot energetic electrons at the critical surface. These electrons propagate inward and the resulting space charge and induction field generate a return shielding current of the background "cold" electrons (14, 23). As has been observed in a variety of PIC simulation studies (24–27), at an initial stage the two currents spatially overlap and the resultant magnetic field is zero. The currents subsequently get Weibel separated, wherein quasi-static ordered magnetic field configurations get generated. This is followed by the tearing and coalescence instabilities, which produce current channels and hence filamentary magnetic field structures. The dynamical formation of these structures occurs on a time scale much shorter than a picosecond and initiates from a spatial scale of order \(c/\omega_p \approx 0.1 \mu m\) (where \(c\) is the speed of light and \(\omega_p\) is the plasma frequency), which is much smaller than our spatial resolution (approximately 4 \(\mu m\)). Hence these fine scale spatio-temporal features cannot be captured in our experiments. However, the subsequent turbulence generation [due to mechanism such as fluid like velocity shear driven Kelvin–Helmholtz (KH) like instability arising due to the current shear in spatially separated forward and return shielding currents (12, 28, 29)], leads to the formation of random filamentary magnetic fields, which are sustained over much longer time scales. Our present experimental observation falls in this particular time scale regime for which we provide a detailed analysis.

Filamentary Structures

The magnetic field spatial profiles presented here provide direct pictures of filamentation (Fig. 3). So far filamentation has been seen indirectly in experiments [via spatial profiles of fast electron beams (30), spatial profiles of accelerated proton beams (31), or via optical emission from the target rear (32)]. These provide indirect and somewhat incomplete evidence in the sense that (i) they do not directly measure/reflect the current structures inside the target but are inferred from secondary effects, (ii) signals are measured outside the target and not in situ, and (iii) they are not time resolved. In contrast, we present evolution of the filamentary structures (a) right at the critical surface and (b) resolved all the way up to 7.0 ps—i.e., long after the pump irradiation. Theoretical expectations and simulations (13, 33) suggest that the Weibel separated and tearing destabilized filament thickness should be of the order of \(c/\omega_p\) (approximately 0.1 \(\mu m\)). The typical thickness of a filament we measure is approximately 4 \(\mu m\) (Fig. 2E), indicating that the coalescence of several filaments has occurred. According to simulations the process of Weibel separation and tearing instability for filament formation occurs on the time scale of a few tens of femtoseconds (13) and hence
can not be captured in present experimental observations. Our studies capture the structures after some coalescence has taken place and monitor the subsequent evolution and long term behavior.

The experimentally measured time evolution of the magnetic field is very well reproduced by the 2D-PIC simulations (Fig. 2B), which show that the magnetic field increases with time until around 3.5 ps and then begins to decrease. The lower curve in Fig. 2B is obtained by a spatial average along the direction of the plasma density gradient from \(n_e \) to \(4n_e \). This gives a magnetic field value slightly larger than the experimental value because the latter is a temporal and spatial average. As shown in Fig. 2C, the magnetic field structure is determined by the hot electron source produced by the incident laser pulse at the initial stage (0.3 ps). Later, filamentation of the laser produced electron beams and the associated cold return currents develops due to the Weibel-like instability. Localization of the magnetic field is evident at times larger than 0.3 ps. It is found that, collisional resistivity strongly influences the motion of both cold plasma electrons and energetic beam electrons (34), which dominates the long time (multipicosecond) behavior of currents and associated high magnetic fields.

Turbulent Magnetic Field

There is much more information hidden in the measured spatial structures. Fig. 4 presents the power spectrum of images at several time delays. The power spectrum gives the power contained in each spatial mode. To elucidate the measured spatial structure of the magnetic field, we present the 1D power spectrum obtained from the 2D power spectrum by integrating along one spatial dimension (see Methods for more details). The spatial structure of magnetic field profile in the transverse plane indeed exhibits considerable randomness right from the data at 0.2 ps to the last observation shown at 7.0 ps. The spatial randomness of the measured magnetic field profiles provides a strong direct indication for turbulence. A broad power-law Fourier spectrum obtained by analyzing dozens of such images (details are described in Methods) is yet another pointer toward the turbulent nature of the phenomenon (18, 20, 21). The spatial power spectra have an identical form for all times though the spatial transverse profile of magnetic field appear significantly different at each instant (Fig. 4). The form remains identical albeit the spectral intensities at various scales show a steady increase up to 3.2 ps and a decay beyond this time. Further, the spectrum shows three distinct peaks occurring around three harmonics—namely, \(k, 2k, \) and \(3k \) with \(k \approx 7 \) (in units of inverse electron skin depth) in all the datasets. The spectra fit a power law \(k^{-\alpha} \) with an index that is close to \(\alpha = 2 \). In short, the transverse spatial magnetic field profile shows the following characteristic features: (i) random spatial pattern in transverse plane of the target which has a maximum amplitude at \(\approx 3.2 \) ps; (ii) identical form of the spectra for all times; (iii) spectral peaks at the first, second, and third harmonic of \(k \) with \(k \approx 7 \); (iv) the spectra fits a power law \(k^{-2} \).

The inset of Fig. 4 shows the power spectrum derived from our 2D-PIC simulations. It can be seen from this figure that the spectrum follows a power-law \(k^{-2} \) similar to the experimental results, in particular at the later stages of evolution. The results for the magnetic field are not much sensitive to the initial electron temperatures. The final electron temperature is in the range of 300–600 keV and ion temperature in the range 4–8 keV. The cell size in our simulation prevents the retrieval of the sharp features seen in the experiment.

These features can be readily understood on the basis of an electron magnetohydrodynamic (EMHD) description. The forward and return shielding currents get spatially separated as a result of Weibel instability during the initial femtoseconds of evolution (13). The subsequent tearing and coalescence instabilities generate current channels with sheared electron flow configuration. This sheared electron flow configuration is susceptible to KH like instability and may be responsible for turbulence in the magnetic field, resulting in a broad power spectrum. Furthermore, as the separated current pulse moves toward a high density plasma (it has to traverse from the critical density of \(n_e \) to \(4n_e \), where observations are made) it encounters plasma density inhomogeneity and forms structures sharper than the electron skin depth by the mechanism outlined in our earlier work (27). We believe this may be responsible for the multiple peaks observed in the spectrum at scales much sharper than the electron skin depth.

Let us now estimate the value of the Reynolds like parameter (the typical ratio of nonlinearity to dissipation pertinent to the

Fig. 3. Complete dynamics of spatio-temporal evolution of the intense laser induced magnetic field at the critical surface of the plasma measured with a 400-nm probe pulse.
system) for our experiments. Here this will be provided by $R_{\text{exp}} = v \cdot \nabla \sqrt{\kappa_0 / \kappa_1}$, the dominant dissipation being the resistivity arising out of the electron-ion classical collision frequency. For fast electrons $v \sim c$ and taking the typical scales of filaments to be of the order of skin depth, we have $R_{\text{exp}} \sim \alpha_{\text{pe}} / \kappa_0 \sim 10^6$ a reasonable value for the turbulence to set in (18, 20, 21). We also wish to point out that, the energy spectrum for EMHD turbulence have been predicted to be (35) around $-7 / 3$ (~ -2.33) for $k < 1$, and $-5 / 3$ (~ -1.66) for $k > 1$, which are numbers quite close to -2.

Conclusions

In conclusion, we have presented direct evidence for turbulence in the megagauss magnetic fields generated by relativistic electron currents induced in a solid target by high intensity, femtosecond laser pulses. Our pump-probe measurements and PIC simulations clearly establish the power-law behavior of the magnetic field. We believe that our results will have important implications for understanding phenomena affected by plasma turbulence, for example turbulent induced resistivity and how it may affect the fast ignition of laser fusion by such hot electron jets. They also open the possibility for laboratory simulations of turbulent structures in stellar environments.

Methods

Experimental. The experiments were performed using a 20 terawatt Ti:sapphire chirped pulse amplification laser at the Tata Institute of Fundamental Research, Mumbai, delivering 30 fs, 800 nm pulses at repetition rate of 10 Hz. The schematic of the experimental setup is shown in Fig. 1. The p-polarized laser pump pulse was incident at an angle 40° with respect to the target normal and focused to $17 \mu m$ spot with a $f/3$ off-axis parabola on an optically polished aluminum coated BK-7 glass target. The thickness of the aluminum coating on the BK-7 glass is kept much larger than the skin depth ($\delta_0 \sim c / \omega_{pe} \sim 100 \text{nm}$). So the incident pump laser interacts only with the aluminum coating and creates plasma on aluminum layer and hot electron can propagates through the glass of lower conductivity. The pulse energy on target is 120 mJ, giving a peak intensity of 10^{19}W/cm^2. The pulse energy is slightly lower, approximately 20% for the second pulse.

The spatial overlap of pump and probe pulses was achieved by viewing the interaction region with a video zoom arm there are two detectors divided into two arms so that both can be measured simultaneously. In each arm there are two detectors—a photomultiplier tube to measure space integrated ellipticity and a CCD camera to measure spatially resolved ellipticity. Magnetic field can be derived from the induced ellipticity by using equation $\psi(t) = (e^2 / m_e c \omega_{\text{pe}}) / n_e(t) \mathbf{B}(t) \mathbf{B}(t) dt$ (19). In brief, it can be shown that the Stokes' vector in the magnetized plasma evolves in the direction of the propagation of the laser pulse, depending on the self-generated magnetic field. The plasma box is divided into a large number of slabs, where the plasma parameters are assumed to be approximately constant in a given slab. The output Stokes' vector of one slab is fed into the next slab as the input and the evolution equation of the Stokes' vector is solved numerically in each slab to finally yield the ellipticity (and hence the magnetic field) of the laser pulse emerging from the plasma box. An exponential plasma density profile was used for the numerical integration with a plasma expansion velocity of $5 \times 10^6 \text{cm/sec}$ derived from Doppler shift measurement of the reflected probe from plasma (38). The above procedure was implemented for each CCD pixel to get a 2D spatial mapping of the magnetic field at the critical surface of the 400-nm probe beam.

Turbulence Analysis. The power spectra have been calculated as follows. The transverse profile of magnetic field image $[\mathbf{B}(x, y)]$ is converted into spatial Fourier transform $[\mathbf{B}(k_x, k_y)]$ image. Two-dimensional power spectrum $[P(k_x, k_y)]$ is calculated from $[\mathbf{B}(k_x, k_y)]$ by using

$$P(k_x, k_y) = \mathcal{F} \{ \mathcal{F}^{-1} \{ \mathbf{B}(x, y) \} \} = \mathcal{F} \{ \mathcal{F}^{-1} \{ \mathbf{B}(x, y) \} \}.$$

Then the 1D power spectrum $[Q(k_x)]$ and $[Q(k_y)]$ is observed as follows:

$$Q(k_x) = \int P(k_x, k_y)dk_y,$$

$$Q(k_y) = \int P(k_x, k_y)dk_x.$$

PIC Simulations. We have conducted a series of 2D-PIC simulations with a code developed following the scheme described in refs. 37–39. In our code, binary collisions between electrons and electrons-ions are included as per the scheme in refs. 40 and 41. Absorption and periodic boundary conditions are adopted in the z direction and y direction, respectively. Particles leaving from the simulation box are reflected with random initial thermal velocities. The simulation box is 161×962 with 32 cells in a laser wavelength λ. There are 25 particles per cell per species. In our simulations, aluminum targets are used. Plasma density is uniform along the y direction and exponentially grows along the z direction as $n_i \propto \exp(z/L) - 1$ to a plateau at 140λ, where $L = 2\lambda$ is the scale length. The initial temperature of the electrons and ions are 10eV and 1eV, respectively (note that the simulation results do not depend upon the initial electron temperature, in particular at the later stages of evolution). P-polarized laser is incident at 45° angle on the target with an intensity of $3.0 \times 10^{18} \text{W/cm}^2$, the wavelength (λ) of 800 nm. The laser field profile is $a_0 = a_0 \sin^2(\pi z / L) \exp(\pi^2 / a_0^2)$, the laser pulse duration (τ) is 20 laser cycles (33fs), and the waist (w_0) is 10.λ.

ACKNOWLEDGMENTS. A.D. acknowledges discussions with E. Bodenschatz, G. Falkovich, and S. Malenovskii at the KITP workshop on Nature of Turbulence in 2011. G.R.K. and A.D. acknowledge their respective DAE-SRC-ORI grants (Government of India). G.R.K. also acknowledges a J.C. Bose Fellowship from the Department of Science and Technology (Government of India). Z.M.S. acknowledges the support from the Natural Science Foundation of China (Grants 11075105 and 11121504).