Research paper

Extremely high Li and low $\delta^{7}\text{Li}$ signatures in the lithospheric mantle

Ben-Xun Su a,*, Hong-Fu Zhang a,**, Etienne Deloule b, Patrick Asamoah Sakyi c, Yan Xiao a, Yan-Jie Tang a, Yan Hu a, Ji-Feng Ying a, Ping-Ping Liu d

a State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China
b Centre National de la Recherche Scientifique, CRPG, B.P20, 54501 Vandoeuvre-Les-Nancy Cedex, France
c Department of Earth Science, University of Ghana, P.O. Box IG 58, Legon-Accra, Ghana
d Department of Earth Sciences, the University of Hong Kong, Pokfulam Road, Hong Kong, China

A R T I C L E I N F O

Article history:
Received 12 April 2011
Received in revised form 11 August 2011
Accepted 21 November 2011
Available online 28 November 2011

Editor: U. Brand

Keywords:
Li isotope
Mantle peridotite xenolith
Metasomatism
Lithospheric mantle

A B S T R A C T

Geochemical behavior of lithium (Li) in mantle processes is generally explained by: (1) Li diffuses into minerals from melts, faster in clinopyroxene than in olivine, creating isotopically lighter-Li clinopyroxene and heavier-Li olivine; (2) Partitioning of Li changes with temperature, and as cooling proceeds Li diffuses into clinopyroxene from olivine, also resulting in low-$\delta^{7}\text{Li}$ clinopyroxene and high-$\delta^{7}\text{Li}$ olivine, similar to the result of process (1). Our results obtained from highly carbonatite-metasomatized peridotite xenoliths from the Western Qinling reveal that the minerals of these xenoliths contain extremely high Li in a range of 2–16 ppm for olivine, 2–43 ppm for orthopyroxene, and up to 75 ppm for clinopyroxene. Secondly, olivines have much lower $\delta^{7}\text{Li}$ (down to -42%) relative to co-existent pyroxenes. Above observations provide important insights into the behavior of Li during mantle processes. One explanation is that the fractionation of Li strongly depends on the metasomatic medium. Alkaline melts, particularly Na-rich carbonatitic melts, which have high Li contents (~200 ppm) but mantle level Li diffusion, tend to effectively transfer $\delta^{7}\text{Li}$ into olivine and $\delta^{7}\text{Li}$ into pyroxene, while silicate melts behave on the contrary. Alternative might be the existence of a reservoir with a high Li content but low $\delta^{7}\text{Li}$, like eclogite, in the mantle since the $\delta^{7}\text{Li}$ released into the overlying mantle wedge during dehydration. This study reveals the distinctive behavior of Li between the carbonate and silicate metasomatism in the mantle.

Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved.

1. Introduction

Li is characterized by a large mass difference (~17%) between its two isotopes, ^{6}Li and ^{7}Li, which exhibit significant fractionation (~20% to +40%) in terrestrial systems (e.g., Tomascak, 2004). Theoretical and case studies (e.g., Tomascak et al., 1999; Chan and Frey, 2003) have revealed that equilibrium isotopic fractionation of Li during high temperature processes is insignificant (~1.0%), compared to kinetic fractionation (Richter et al., 2003). Thus Li isotope system is a potential geochemical tracer of different geological processes such as subduction (Elliott et al., 2006) and mantle metasomatism (Zhang et al., 2010). However, the geochemical behavior of Li isotopes in processes at mantle levels of the earth is still not well understood and remains a dispute issue in scientists due to their significant chemical mobility and their sensitivity to physico-chemical conditions. In addition, low and negative $\delta^{7}\text{Li}$ reservoir has not been found in the mantle of the Earth, even though many positive $\delta^{7}\text{Li}$ reservoirs have been reported increasingly. Metasomatism is one of the most important events occurring in the mantle, and has been promised to modify the distribution of Li isotopes (e.g., Zhang et al., 2010; Tang et al., 2011). Up to date, there are at least two dozens of papers that deal with mantle geochemistry and/or diffusive fractionation of Li but, curiously, they do not find their way to be hinted on the geochemical behavior of Li. The re-distribution of Li isotopes in mantle minerals due to metasomatism is still poorly investigated, and this issue strongly requires in situ Li isotopic analysis on the mantle minerals (Jeffcoat et al., 2007), which may generate more significant constraints on the Li isotopic fractionation and its mechanism. In this study, we present the first Li isotopic data on variably metasomatized peridotite xenoliths from the Qinling Orogenic Belt, which is a tectonic suture between North China and Yangtze Cratons following the subduction of the Tethyan Ocean in Paleozoic. We use these data to postulate a possible occurrence of high Li but low $\delta^{7}\text{Li}$ mantle reservoir and explain the behavior of Li during peridotite-melt interaction.

2. Samples

A suite of peridotite xenoliths, entained in Cenozoic kamafugites with associated carbonatites, were collected from the Western Qinling (N 33°57′4″, E 104°52′10″) in the western Qinling-Sulu-Dabie suture zone in central China (Su et al., 2009, 2010a, 2010b, 2011a, 2011b). One of the studied samples, garnet lherzolite...
(HT08-2B) displays inequigranular texture and breakdown features such as spongy-textured Cpx, decomposed garnet and Opx. Olivines in the garnet lherzolite are homogenous in major elements with Fm (Mg# = 100×Mg/(Mg+Fe)) ranging from 90.2 to 90.6. The orthopyroxenes have Mg# in the range of 90.6–91.0 and show restricted compositional variations in Al2O3 (3.95–4.19%), CaO (1.04–1.16%) and Na2O (0.11–0.24%) contents. The clinopyroxenes have low CaO (18.1–18.7% except 20.9% in spongy rim) and high Na2O (1.41–1.66% except 0.55% in spongy rim) contents. The other sample, spinel lherzolite (HT08-5), also has inequigranular texture and is marked by homogeneous major-element compositions in olivines and orthopyroxenes and zoned clinopyroxenes.

Table 1

In situ analytical major elemental (EPMA) and Li isotopic (Cameca IMS-1280) data on minerals of the peridotite xenoliths from the Qinling Orogenic Belt.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>SiO2</th>
<th>TiO2</th>
<th>Al2O3</th>
<th>Cr2O3</th>
<th>FeO</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na2O</th>
<th>K2O</th>
<th>NiO</th>
<th>Total</th>
<th>Mg#</th>
<th>Li ppm</th>
<th>δ7Li (‰)</th>
<th>2σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT08-2B Cpx lherzolite</td>
<td></td>
</tr>
<tr>
<td>Cpx 1</td>
<td>4.07</td>
<td>0.00</td>
<td>0.00</td>
<td>9.10</td>
<td>0.11</td>
<td>48.1</td>
<td>0.13</td>
<td>0.00</td>
<td>0.01</td>
<td>0.32</td>
<td>98.5</td>
<td>90.5</td>
<td>10.5</td>
<td>−4.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Cpx 2</td>
<td>4.09</td>
<td>0.02</td>
<td>0.04</td>
<td>9.80</td>
<td>0.10</td>
<td>48.4</td>
<td>0.07</td>
<td>0.02</td>
<td>0.00</td>
<td>0.43</td>
<td>99.3</td>
<td>90.4</td>
<td>10.6</td>
<td>−17.7</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Cpx 3</td>
<td>4.08</td>
<td>0.02</td>
<td>0.00</td>
<td>9.30</td>
<td>0.12</td>
<td>48.2</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.30</td>
<td>99.1</td>
<td>90.2</td>
<td>9.9</td>
<td>−21.4</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Cpx 4</td>
<td>4.10</td>
<td>0.00</td>
<td>0.06</td>
<td>9.27</td>
<td>0.10</td>
<td>48.3</td>
<td>0.02</td>
<td>0.00</td>
<td>0.02</td>
<td>0.34</td>
<td>99.1</td>
<td>90.4</td>
<td>4.8</td>
<td>−42.4</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Cpx 5</td>
<td>4.10</td>
<td>0.00</td>
<td>0.00</td>
<td>9.06</td>
<td>0.13</td>
<td>48.9</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.39</td>
<td>99.2</td>
<td>90.4</td>
<td>2.9</td>
<td>−26.7</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Cpx 6</td>
<td>4.04</td>
<td>0.05</td>
<td>0.04</td>
<td>9.22</td>
<td>0.11</td>
<td>49.4</td>
<td>0.07</td>
<td>0.00</td>
<td>0.00</td>
<td>0.40</td>
<td>99.7</td>
<td>90.6</td>
<td>8.3</td>
<td>−5.3</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Cpx 1</td>
<td>4.11</td>
<td>0.00</td>
<td>0.03</td>
<td>9.22</td>
<td>0.16</td>
<td>48.0</td>
<td>0.09</td>
<td>0.03</td>
<td>0.00</td>
<td>0.35</td>
<td>99.0</td>
<td>90.4</td>
<td>15.8</td>
<td>−2.9</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Opx 2</td>
<td>4.06</td>
<td>0.00</td>
<td>0.05</td>
<td>9.07</td>
<td>0.10</td>
<td>48.8</td>
<td>0.13</td>
<td>0.07</td>
<td>0.02</td>
<td>0.40</td>
<td>98.7</td>
<td>90.5</td>
<td>12.6</td>
<td>−6.0</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Opx 3</td>
<td>4.08</td>
<td>0.00</td>
<td>0.07</td>
<td>9.10</td>
<td>0.12</td>
<td>48.4</td>
<td>0.12</td>
<td>0.02</td>
<td>0.01</td>
<td>0.32</td>
<td>99.1</td>
<td>90.5</td>
<td>6.7</td>
<td>−48.1</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Opx 4</td>
<td>4.08</td>
<td>0.02</td>
<td>0.00</td>
<td>9.30</td>
<td>0.12</td>
<td>48.3</td>
<td>0.08</td>
<td>0.00</td>
<td>0.01</td>
<td>0.37</td>
<td>99.0</td>
<td>90.3</td>
<td>3.9</td>
<td>−33.8</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Opx 5</td>
<td>4.11</td>
<td>0.02</td>
<td>0.02</td>
<td>9.12</td>
<td>0.10</td>
<td>48.6</td>
<td>0.09</td>
<td>0.00</td>
<td>0.00</td>
<td>0.41</td>
<td>99.6</td>
<td>90.6</td>
<td>12.9</td>
<td>−11.2</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Opx 6</td>
<td>4.04</td>
<td>0.02</td>
<td>0.00</td>
<td>9.41</td>
<td>0.11</td>
<td>48.4</td>
<td>0.08</td>
<td>0.00</td>
<td>0.00</td>
<td>0.38</td>
<td>99.4</td>
<td>90.4</td>
<td>12.5</td>
<td>−5.9</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Opx 7</td>
<td>4.12</td>
<td>0.00</td>
<td>0.05</td>
<td>9.21</td>
<td>0.11</td>
<td>48.4</td>
<td>0.08</td>
<td>0.00</td>
<td>0.00</td>
<td>0.38</td>
<td>99.4</td>
<td>90.4</td>
<td>12.5</td>
<td>−5.9</td>
<td>0.9</td>
<td></td>
</tr>
</tbody>
</table>

Note: Mg# = 100×Mg/(Mg+Fe).

Author's personal copy
whose rims show higher TiO$_2$, Cr$_2$O$_3$ and CaO, and lower Al$_2$O$_3$ and Na$_2$O contents than the cores (Table 1).

3. Analytical methods

Major element compositions were determined by wavelength-dispersive spectrometry using JEOI JXA8100 electron probe microanalyzer (EPMA) operating at an accelerating voltage of 15 kV and 10 nA beam current, 5 μm beam spot and 10–30 s counting time on peak. The precisions of all analyzed elements are better than 1.5%. Natural jadeite [NaAlSiO$_4$] for Na, Al and Si, rhodonite [MnSiO$_3$] for Mn, sanidine [KAlSi$_3$O$_8$] for K, Fe-Ti oxide [Fe$_2$Al$_2$O$_4$] for Fe, Cr-diopside [(Mg, Cr)Ca$_2$Si$_2$O$_6$] for Ca, olivine [(Mg, Fe)$_2$SiO$_4$] for Mg) and synthetic (rutile for Ti, 99.7% Cr$_2$O$_3$ for Cr, Ni$_2$Si for Ni) minerals were used as standards for matrix corrections. Calibration was performed using NIST SRM 610 (Pearce et al., 1997) as an external calibration sample together with Ca as internal standard.

In situ trace element concentrations were measured by laser ablation inductively-coupled plasma mass spectrometry (LA-ICPMS). Detailed analytical procedures are described elsewhere (Gao et al., 2002). Helium was used as carrier gas to enhance transport efficiency of ablated sample. The helium carrier gas inside the ablation cell was mixed with argon as a makeup gas before entering the ICP to maintain stable and optimum excitation condition. The measurements were carried out using time resolved analysis operating in a fast, peak hopping sequence in dual detector mode. A 40 μm spot size was used in this study. Each spot analysis consisted of approximately 30 s background acquisition followed by 60 s data acquisition from the sample. Calibration was performed using NIST SRM 610 (Pearce et al., 1997) as an external calibration sample together with Ca as internal standard element.

Li contents and its isotopic compositions were measured on Cameca IMS-1280 ion microprobe. A 13 kV, 10–20 nA O-primary beam was focused on a 20 μm diameter spot of the mineral. By sputtering the sample with the primary beam, the positive secondary ions produced were accelerated through 10 kV and measured at medium mass resolution (M/ΔM~1100), with a transmitted field of 125 μm, an aperture field of 4000, and an energy window of 60 eV without energy offset. The primary beam position, entrance slits, contrast aperture, magnetic field and energy offset were automatically centered before each measurement. Secondary ions were counted on mono-collection pulse counting mode. Thirty cycles were measured with counting times of 12, 4 and 4 s for 7Li, background at the 6.5 mass, and 6Li, respectively. The counting rate for 7Li ranges from 30,000 to 100,000 cps, depending on the Li content of the sample and primary beam intensity. A 60-s pre-sputtering without raster was applied before analysis. Cpx samples BZ226 and BZ.CG, Ol sample BZ29 and Opx sample BZ226 (Decitre et al., 2002) were used as standards (Fig. 1). All analyses were carried out at the Institute of Geology and Geophysics, Chinese Academy of Sciences. Li contents and isotopic compositions were measured on thin-section using Cameca IMS-1280. The external 2σ errors of the isotope compositions for both the standards and the samples are less than 2‰ (Table 1). Li isotopes are given as $\delta^{7}{\text{Li}} = (\text{Li}^{7}/\text{Li}^{6})_{\text{sample}}/(\text{Li}^{7}/\text{Li}^{6})_{\text{NIST L-SVEC}} - 1) \times 1000$ relative to the standard NIST SRM 8545 (L-SVEC with $\delta^{7}{\text{Li}} = 12.0192$). The instrumental mass fractionation is expressed in $\delta^{7}{\text{Li}}$ units: $\Delta^{7}{\text{Li}} = \delta^{7}{\text{Li}}_{\text{ion microprobe}} - \delta^{7}{\text{Li}}_{\text{mass spectrometer}}$. The value of $\Delta^{7}{\text{Li}}$ may change between different sessions, owing to variations in the ion probe set up and to electron multiplier aging (Deloule et al., 1992). The measured $\delta^{7}{\text{Li}}$ values of standard samples are listed in Table 2. Note that the measured Li contents in our samples have similar Mg# numbers (Ol: 90.2–90.9; Opx: 90.6–91.5; Cpx: 89.5–92.2) (Table 1) to the standard ones. Within analytical uncertainty, Li contents measured by Cameca IMS-1280 are identical to those obtained from LA-ICPMS analyses (Table 3). Thus, matrix effect (Bell et al., 2009) can be ignored in our measurement and the data we obtained are reliable.

4. Results and comparisons

Olivines in both samples show compositional zonation, with Li contents and $\delta^{7}{\text{Li}}$ values consistently increasing from core to rim (Fig. 2). Li contents of olivines in the garnet peridotite range from 4 ppm in the core to 16 ppm in the rim, while $\delta^{7}{\text{Li}}$ values display larger variations of ~42‰ in the core and ~3‰ in the rim (Table 1; Fig. 2). The Li contents and $\delta^{7}{\text{Li}}$ of olivines in the spinel lherzolite respectively range from 2 to 11 ppm and ~24‰ to ~7‰. Compared to published Li data of olivines (content: 0.6–5 ppm; $\delta^{7}{\text{Li}}$: ~8‰ to +17‰) from worldwide peridotites (e.g., Tang et al., 2007, 2011 and references therein), the Li compositions of the Western Qinling olivines are extremely rich in Li but have low $\delta^{7}{\text{Li}}$ (Fig. 3a). The Li contents of orthopyroxenes in the spinel lherzolite (2–5 ppm) are identical to that of worldwide peridotites, whereas those of the garnet lherzolite (~8–43 ppm) are distinctly higher. On the other hand, their corresponding $\delta^{7}{\text{Li}}$ of 0‰ to +9‰ and +4‰ to +9‰ (Table 1; Fig. 2) are identical to the $\delta^{7}{\text{Li}}$ values of those from the worldwide peridotites (Fig. 3b). Clinopyroxenes in both samples have identical $\delta^{7}{\text{Li}}$ variations between ~2‰ and +13‰, falling within the field defined by worldwide peridotitic clinopyroxenes, but their Li contents are remarkably distinct (Table 1; Figs. 2, 3c). Except two spots, the clinopyroxenes in the spinel lherzolite have very low Li contents (<1.2 ppm) whereas those in the garnet lherzolite show overall extremely high Li contents, mostly predominantly in the range of 60–75 ppm, much higher than those in nephelineites but similar to those in eclogites, and alkaline and appaictic rocks (Fig. 3c). In summary, the Western Qinling peridotite xenoliths have extremely high Li contents in Ol, Opx and Cpx compared to the same minerals from worldwide peridotites, and conspicuously lower $\delta^{7}{\text{Li}}$ signatures in olivines than pyroxenes.

5. Discussion

Li is a moderately incompatible element, has high diffusivity, and 4Li diffuses ~3% faster than 7Li in mantle minerals (Richter et al., 2003; Table 2).

![Fig. 1. Standard Li isotopic variation throughout the analyses with 2σ error bars.](image-url)
Coogan et al. 2005). Its diffusive fractionation has been invoked to account for Li isotopic variations in peridotites (Jeffcoate et al., 2007). Furthermore, Li will diffuse from Ol into Cpx with decreasing temperature at mantle depth, giving rise to distinctly high-δ^{7}Li Ol and low-δ^{7}Li Cpx in mantle peridotites (Rudnick and Iovon, 2007; Ionov and Seitz, 2008). Additionally, equilibrium isotopic fractionation of Li in high
temperature processes is likely to be negligible (Richter et al., 2009), suggesting that, either isotopic diffusion or equilibrium fractionation alone cannot satisfactorily explain the unusual Li compositional features observed in the Western Qinling peridotites.

To better interpret the Li isotopic variations in mantle materials, peridotite–melt interaction has recently received great attention (Rudnick and Ionov, 2007; Tang et al., 2007; Wagner and Deloule, 2007; Zhang et al., 2010). Li from melts diffuses into minerals during metasomatic processes, and it is worth noting that ^6Li is generally more readily to enter solid phases while ^7Li prefers to be retained in melt at mantle condition (Chan et al., 1992; Wunder et al., 2006, 2007). Previous studies (Su et al., 2010a, 2010b, 2011a, 2011b) have already demonstrated that the lithospheric mantle beneath the Western Qinling has been subjected to carbonatite metasomatism. In this study, the clinopyroxenes in the garnet lherzolite show light rare earth element (LREE) enrichment in the chondrite-normalized REE patterns and overall higher REE abundances in the rims than in the cores, and the rims of the orthopyroxenes are relatively richer in REE compared to their cores (Fig. 4a), reflecting obvious metasomatic signature. The LREE-depleted cores of the clinopyroxenes together with the LREE-enriched rims of both clinopyroxenes and orthopyroxenes in the spinel lherzolite (Fig. 4b) imply that they were only weakly metasomatized, probably representing the very beginning of metasomatism. These features are consistent with the upward metasomatism beneath the Western Qinling inferred from a suite of mantle xenoliths (Su et al., 2010a, 2010b). Consequently, these xenoliths record variable degrees of carbonatite metasomatism that may exert great influence on Li isotopic distributions in the metasomatized minerals, which in turn can help identify the nature of those carbonatic melts and Li behavior during interaction of carbonatite melts with mantle peridotites.

Highly concentrated Li (tens or hundreds ppm) melt is required during the interaction to generate the exceedingly high Li contents in the Western Qinling peridotites. Fig. 5 illustrates the presently identified main reservoirs in the Earth through compiling published Li isotopic data of worldwide rocks in recent years for reference to discuss the origin and/or contribution of the Li signatures in this study. Li contents of peridotite xenoliths ranges from 0.5 to 9 ppm (Zhang et al., 2010 and references therein), in contrast to much larger variations exhibited in mantle-derived melts. For example, mid-oceanic ridge basalts (MORB) have Li ranging from 3 to 42 ppm (Fig. 5a; Elliott et al., 2006; Tomascak et al., 2008; Schuessler et al. 2009), while the Li contents of oceanic island basalts (OIB) and arc lavas are in the range of 1–26 ppm (except one datum of up to 56 ppm) (e.g., Vlastelic et al., 2009; Chan and Frey, 2003; Chan et al., 2009; Magna et al., 2011) and 3–35 ppm (e.g., Chan et al., 2002; Fig. 5a, b, c) respectively. On the other hand, studies conducted on worldwide carbonatites show two distinct ranges of Li depending on their specific compositions: calcioarbonatites are characterized by low Li contents (0.2–11 ppm), whereas natrocarbonatites are particularly rich in Li (211–295 ppm) as well as Na (Halama et al., 2007, 2008). Lithium is far more compatible in more albitic plagioclase than anorthitic plagioclase (Coogan, 2011). These results probably reflect the chemical nature of Li where it behaves as a mobile alkali metal, and thus, shows similar geochemical behavior in melts to other alkali elements such as Na (Chan et al., 1992). Studies have shown that Na-enriched melts have higher Li contents, and this is further
supported by the occurrence of Li-enriched clinopyroxenes from nephelineites, alkaline and agpaitic rocks (Fig. 3c; Halama et al., 2007; Marks et al., 2007). The clinopyroxenes in the Western Qinling peridotites, especially in the garnet lherzolite, show identical Li contents to those in alkaline rocks (Fig. 3c). Moreover, with the increasing degree of metasomatism, both Li contents and δ7Li are positively correlated to Na2O contents in clinopyroxene and orthopyroxene (Fig. 6a–d), further supporting the geochemical affinity between Li and Na. Their positive, rather than negative, correlations in both pyroxenes indicate that Li does not replace Na in pyroxenes. Instead, Li contents and δ7Li exhibit negative correlations to MgO contents of pyroxenes (Table 1), which is consistent with the view that Li replaces Mg in octahedral coordination in synthetic clinopyroxene stated by Wunder et al. (2006). These observations suggest that the extremely high Li contents in the Western Qinling peridotitic minerals might be related to natrocarbonatite metasomatism.

During the interaction between mantle peridotite and carbonate melts, Li is preferentially enriched in Ol compared to coexisting Cpx (Woodland et al., 2004), and the mechanism differs from those in silicate metasomatized peridotites (Seitz et al., 2004; Tang et al., 2007, 2011; Zhang et al., 2010). However, this study shows that the Li contents exhibit a decreasing trend from Ol, through Opx, to Cpx in the weakly-metasomatized spinel lherzolite whereas the reverse is observed in the strongly-metasomatized garnet lherzolite (Fig. 6e). Thus, it probably implies that the Li isotopic fractionation mechanism may be linked to the degrees of metasomatism: Li is preferentially partitioned into Ol at the very beginning of natrocarbonatite metasomatism and is more readily incorporated into Opx and Cpx during high degree metasomatism. As mentioned above, Li and alkali elements usually behave together, although the mechanism is not clear. Carbonatite melts are usually more depleted in Mg and enriched in Li relative to silicate melts, which yields more chances for Li to enter olivine despite that Li replaces Mg in olivine. However, olivine could easily reach up to Li-saturation as its crystal structure cannot possess enough trace elements. On the other hand, clinopyroxene is the major reservoir of trace element and can receive large amounts of Li during carbonate metasomatism. More detailed variations during the transformation require much more analyses as well as further experimental studies.

Generally, the Li isotopic partitioning mechanism in metasomatic process has been considered to be similar to those in isotopic diffusion and equilibrium fractionation, which results in high-δ7Li Ol and low-δ7Li pyroxenes (Tang et al., 2007; Ionov and Seitz, 2008). However, this conventional model cannot be used to thoroughly explain Li
isotopic distribution in the Western Qinling peridotitic minerals, in that both spinel and garnet lherzolites show an increase of $\delta^7\text{Li}$ from Ol to pyroxenes (Fig. 6f). We, therefore, present two scenarios, that could possibly elucidate this discrepancy. One is that Li isotopic behavior, like Li element, may be strongly dependent on the composition of metasomatic agents. The above mentioned melts responsible for Li isotopic fractionation are mostly silicate, but investigation into the geochemical behavior of ^{6}Li and ^{7}Li in carbonate melts, particularly in natrocarbonatite, has received very little attention. The positive correlations between $\delta^{7}\text{Li}$ and Na$_2$O in pyroxenes (Fig. 6b, d) indicate that, compared to ^{6}Li, ^{7}Li readily migrate with Na from natrocarbonatitic melts to clinopyroxenes and orthopyroxenes, leaving ^{6}Li in the melts being incorporated into olivines where alkali elements are almost absent. In other words, the partitioning and fractionation of ^{7}Li will be faster than those of ^{6}Li in presence of Na. The content of Na will change the melt viscosity which may be different at distinct Na contents so that the degree of melt polymerization changes, and then the differential response of Li isotopes could be related to different melt/solid partitioning and fractionation. According to this partitioning mechanism, a natrocarbonatitic melts with high Li but mantle-level ^{7}Li could result in high-^{7}Li Opx and Cpx and corresponding low-^{7}Li Ol.

The other scenario is the possible entrapment of low-^{7}Li materials in high-Li natrocarbonatitic melts. The low ^{7}Li values could be produced by isotopic fractionation during dehydration and metamorphism (Tang et al., 2007; Teng et al., 2007; Wunder et al., 2007). In a more specific way, heavy Li could be released into the mantle wedge in subduction zone while the light component could travel deep into the mantle (Zack et al., 2003; Wunder et al., 2007). The compiled data show that some granulites contain exceedingly low ^{7}Li values down to -18%, but their Li contents are less than 23 ppm (Fig. 5b, d), which is not consistent with high Li signature of peridotites reported in this study. Apart from granulites, limited eclogite data published so far are characterized by exceptionally low ^{7}Li down to -22%, and high Li contents up to 80 ppm (Marschall et al., 2007; Zack et al., 2003; Halama et al., 2011; Fig. 5b, d). These characteristics satisfy the compositional requirement for materials that contribute to the composition of the metasomatic melts. Essentially, omphacites from the eclogites have just identical Li compositions to the clinopyroxenes in the Western Qinling peridotites (Fig. 3c). Then, taking regional geology into account, eclogite massifs might be stagnant in the mantle beneath the Western Qinling Orogenic Belt, which differ from large volumes exhumed to surface in the Sulu-Dabie Belt (Li, 1994; Zhang et al., 2001). Although subduction and collision occurred in this region in the Paleozoic, the chemical imprint of subducted slab can possibly be preserved for billions of years (Walter et al., 2008) and these subducted materials including eclogites could be partly incorporated within upward migrating carbonate melts that subsequently react with lithospheric mantle later. Further studies on orogenic eclogites in the future, could help identify these eclogites as distinctly low ^{7}Li reservoir in the mantle. Again, Li is more readily incorporated into Ol during carbonate metasomatism (Seitz and Woodland, 2000; Woodland et al., 2004), and isotopically ^{7}Li prefers the solid phases while ^{6}Li remains in melts (Chan et al., 1992; Wunder et al., 2007). The initial stage of interaction between high-Li and low-^{7}Li melts and the Western Qinling peridotites with normal mantle values of Li isotopes would produce higher Li and lower ^{7}Li olivines than pyroxenes,
examples of which are found in the spinel lherzolite (Fig. 6e, f). There is probably an upper limit for Ol to incorporate trace elements, including Li, either due to its crystal structure or its lack of alkaline element. Hence at certain stage of metasomatism, olivines cannot take in more Li when the evolved melts are still rich in Li and δ^7Li, since much of δLi might have already been partitioned into olivines. Therefore, the residual Li in the melts will preferentially enter pyroxene. Due to the sufficient capacity of Cpx to accommodate alkaline elements compared with Opx, the high degree metasomatism could produce extremely high-Li and slightly high-δ^7Li Cpx just like those in the Western Qinling garnet peridotite (Fig. 6e, f). As shown above, δ^7Li diffuses faster than δ^6Li, and hence olivines show both content and isotopic zonation of higher δ^7Li contents in the cores and more δ^7Li left in the rims (Fig. 2). However, the content of Na, which may act as an important companion of Li, might be a key controlling factor in the transportation of Li within pyroxenes. For Opx with low Na contents, an inefficient Li transportation by Na may counterbalance the diffusing discrepancy between δ^6Li and δ^7Li, which would generate faint Li elemental and isotopic zoning (Fig. 2). In contrast, Na is present as a major element in Cpx and thus, can easily enter into Cpx crystal structure by substituting for other mineral-forming elements. In such substitution processes, Li and its isotopes are almost homogeneous in the cores of Cpx. The spongy rims of Cpx are compositionally enriched in Ca, Ti, and most trace elements, have high Cr#, and are enriched in Ca, Ti, and most trace elements, have high Cr#, and are depleted in Na, Al, Fe, V_{Al}, and V_{AlIV}/Al compared with the cores, and thus they are assumed to be formed in incipient stage of deformation melting (Su et al., 2011a). Such melting event produced distinct lower Li content in the rims.

Acknowledgements

This work was financially supported by the Natural National Science Foundation of China (Grants 40973012, 41173011 and 91014007) and the China Postdoctoral Science Foundation to Ben-Xun Su. Qian Mao, Yu-Guang Ma and Yue-Heng Yang are thanked for their assistance in the China Postdoctoral Science Foundation to Ben-Xun Su. Qian Mao, Yu-Guang Ma and Yue-Heng Yang are thanked for their assistance in the China Postdoctoral Science Foundation to Ben-Xun Su. Qian Mao, Yu-Guang Ma and Yue-Heng Yang are thanked for their assistance in the China Postdoctoral Science Foundation to Ben-Xun Su. Qian Mao, Yu-Guang Ma and Yue-Heng Yang are thanked for their assistance in the China Postdoctoral Science Foundation to Ben-Xun Su. Qian Mao, Yu-Guang Ma and Yue-Heng Yang are thanked for their assistance in the China Postdoctoral Science Foundation to Ben-Xun Su. Qian Mao, Yu-Guang Ma and Yue-Heng Yang are thanked for their assistance in the China Postdoctoral Science Foundation to Ben-Xun Su. Qian Mao, Yu-Guang Ma and Yue-Heng Yang are thanked for their assistance in the China Postdoctoral Science Foundation to Ben-Xun Su. Qian Mao, Yu-Guang Ma and Yue-Heng Yang are thanked for their assistance in the China Postdoctoral Science Foundation to Ben-Xun Su. Qian Mao, Yu-Guang Ma and Yue-Heng Yang are thanked for their assistance in the China Postdoctoral Science Foundation to Ben-Xun Su. Qian Mao, Yu-Guang Ma and Yue-Heng Yang are thanked for their assistance in the China Postdoctoral Science Foundation to Ben-Xun Su. Qian Mao, Yu-Guang Ma and Yue-Heng Yang. We are grateful to Guo-Qiang Tang and Nishio, Y., Shunichi, N., Yamamoto, J., Sumino, H., Matsumoto, T., Prikhodko, V.S., Arai, S., 2005. Lithium isotopic compositions of the mantle-derived ultramafic xenoliths: petrogenetic implications for EM1 origin. Earth and Planetary Science Letters 217, 245–261.

References

