EXPRESS LETTER

A stagnant slab in a water-bearing mantle transition zone beneath northeast China: implications from regional SH waveform modelling

Lingling Ye,1 Juan Li,1 Tai-Lin Tseng2 and Zhenxing Yao3

1 Key Laboratory of the Earth’s Deep Interior, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China. E-mail: juanli@mail.iggcas.ac.cn
2 Department of Geosciences, National Taiwan University, Taipei, Taiwan
3 Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China

SUMMARY

SH waveforms recorded by a dense regional seismic network are used to constrain the shear wave velocity structure of the upper-mantle transition zone beneath northeast China. By modeling triplication waveforms we show that a 130-km-thick layer of increased seismic velocities is overlaid by a broad slightly depressed 660 km discontinuity. This anomaly can be associated with the westward extension of the stagnant Pacific slab that is deflected and still cold. The transition zone, as a whole, is featured by low shear wave velocity and high $V_p/V_s$ ratio, which infer H$_2$O content of ~0.2–0.3 wt. per cent [(3.0–4.5)×10$^4$ ppm H/Sl] atop the 660 km discontinuity. We interpret that the fast eastward retreat of the Japan Trench facilitated the slab flattening when the subducting oceanic lithosphere hit the bottom of the transition zone, and the leading edge of the slab is currently trapped in a water-bearing mantle beneath northeast China.

Key words: Body waves; Subduction zone processes; Pacific Ocean.

1 INTRODUCTION

The seismic structure of the upper-mantle transition zone (MTZ) is fundamentally important for understanding the scales of mantle circulation as well as the composition of the upper mantle. The 660-km discontinuity (hereafter referred to as the 660), a phase boundary, plays an important role in determining the fate of subducted lithosphere. The undulation of the 660 is generally believed to be caused by thermal anomalies, and a temperature-induced depression of the 660 is expected in the subduction areas due to the negative Clapeyron slope of postspinel transformation (e.g. Ito & Takahashi 1989). Non-olivine phase transitions, major element addition or water content, however, can result in a complicated morphology and velocity structure around the 660 (e.g. Niu & Kawakatsu 1996; Jacobsen & Smyth 2006; Schmerr & Garnero 2007).

Subduction zones in the northwestern Pacific are widely studied and a variety of tomographic images can be found in the literature. A sharp horizontal deflection of the subducted slab above the 660 beneath Japan and Izu-Bonin arcs has been mapped by P-wave traveltime tomography (Van Der Hilst et al. 1991; Fukao et al. 2001; Huang & Zhao 2006); while a slab directly penetrating into the lower mantle is also detected beneath Japan by global P-wave tomography (Bijwaard et al. 1998). A joint bulk-sound and shear wave traveltime inversion reveals substantial differences in the stagnant slab images between the two types of tomography images beneath the Izu-Bonin arc (Widiyantoro et al. 1999; Gorbakov & Kennett 2003). The discrepancy of tomography images is partly due to poor ray coverage of the first arrivals in the deeper portion of the MTZ (Tajima & Grand 1995).

As an alternative approach, triplicate P or S seismic waveforms in regional distances can be modelled to constrain MTZ velocity structure effectively (e.g. Tajima et al. 2009). The triplication waveforms include three sets of arrivals, representing the waves propagating above the discontinuity (AB), the wide-angle reflection off the discontinuity (BC) and the waves diving below the discontinuity (CD) (inset of Fig. 1). Since ray paths of the three arrivals associated with the 660 are very close to each other in the crust and uppermost mantle, the relative time interval and amplitude between the two phases are primarily sensitive to the velocity structure near the 660. However, results of recent studies revealed considerable differences in velocities of the MTZ for regions adjacent to each other beneath the northwestern Pacific subduction zone (e.g. Tajima & Grand 1995; Wang et al. 2006; Wang & Chen 2009; Wang & Niu 2010), yielding ambiguous interpretations about the structure and composition of the deep upper mantle. In this study, we report new results from modelling of the regional SH wavefield from a dense seismic array to constrain the MTZ structure beneath northeast China west of the Japan subduction zone (Fig. 1). The resolved shear wave velocity structure might give new clues to compositional and/or thermal anomaly identification, and for an understanding of the
measuring 330 pairs of manually picked points, we redetermined the focal depth to be about 519 km, the focal depth is crucial for estimating the upper-mantle velocities near the 660 beneath the northwestern Pacific subduction zone. Since the Japan trench (Fig. 1), allowing a tight constraint in velocity near the 660. The 660 gradually deepens to the west with the maximum depression of ∼20 km beneath the west end of the profile. The inset at the bottom is a schematic diagram of seismic triplication with ray path of three phases: AB—waves propagating above the 660; BC—waves reflected off the 660; CD—waves diving below the 660. The velocities deeper than 410 km are further constrained by the modelling of the observed triplication.

Main features in the 660 triplication offer critical clues to the velocities near the discontinuity. The SH triplication branches can be clearly identified in a distance range of 13–25° (Fig. 2a). The AB branch likely extends out to much further distances of approximately 25° as indicated by the onset of diminishing amplitudes. This termination distance, cusp B, is sensitive to the lower MTZ right above the 660. The CD branch begins to emerge at ∼13° and crosses over the AB branch at ∼16° where the waveforms are most compact (point O). Starting at distances of about 13°, the CD arrivals reach the top of the lower mantle and bottom successively deeper to a depth of ∼770 km as the distance increases to ∼25°. We found that the ‘BOD’, confined by the intervals between AB and CD phases, is particularly broad with a significantly delayed AB after distance ∼18°. Such striking features cannot be explained by either the iasp91 model, or the regional models obtained from previous waveform modelling (e.g. models ‘M3.11’ (Tajima & Grand 1998), ‘Asia’ (Wang et al. 2006), ‘Japan’ (Wang & Chen 2009) and ‘255–270’ (Wang & Niu 2010) in Supporting Information Fig. S7).

3 RESULTS OF MODELLING AND IMPLICATIONS

We applied the 1-D reflectivity synthetic code (Fuchs & Muller 1971; Wang 1999) in generating theoretical seismograms to fit observed waveforms. We took source mechanism from Global CMT...
Figure 2. (a) Comparison of observed transverse displacements (black lines) and synthetic waveforms (dashed lines) calculated using our preferred model—’NEChina_S’. The theoretical traveltime curves of this model calculated by TauP (Buland & Chapman 1983) are plotted as green curves; while the grey curves are the prediction from model iasp91. The red dots mark the picked arrival time for the peaks of AB and CD phases. (b) Comparison of the S velocity models of iasp91 and our preferred model ‘NEChina_S’. (c) Comparison of the P velocity models of iasp91 and our preferred model ‘NEChina_P’. Station corrections of \( \sim 2.0 \) s are made for seven stations located within epicentral distance 18\(^{\circ}\)–22\(^{\circ}\), which might be related with the local structure beneath stations. The four numbers at the right side of each waveform in (a) represent the name and azimuth angle of each station, the bottoming depths of the AB and CD phases calculated from model ‘NEChina_S’, respectively.

(Dziewonski et al. 1981), and used a Gaussian wavelet to represent the source time function as indicated by the simple teleseismic waveform. We determine the optimal depth of the 660 and the velocity gradients above and below the discontinuity by forward modelling (systematic tests available in Supporting Information), which is guided by our qualitative understanding of the detected features. For each model, we calculated the coefficient of cross-correlation between the synthetic and observed waveforms to determine the goodness of fit. To match the extended cusp B to a distance of \( \sim 25^{\circ} \) in contrast to \( \sim 20^{\circ} \) in iasp91/Miasp without shifting the crossover distance of point O, we found that the gradient of \( V_s \) in the lower MTZ must be very gentle. Moreover, the shortened CO branch, corresponding to rays turning just below the 660, suggests a slightly depressed and broad 660-km discontinuity. The large time interval between AB and CD phases (i.e. broad ‘BOD’) could be matched by a reduced velocity structure above the 660 (Fig. 2). It should be noted that the velocity structure above the focal depth, are obtained mainly from the absolute traveltime fits of AB, and thus is less well constrained. However, the velocity structure below the earthquake is well constrained by both the traveltimes and waveforms associated with the 660-km triplication.

Our preferred shear velocity model ‘NEChina_S’ shows the presence of a relatively high velocity (\( \sim 1 \) per cent) anomaly with thickness of \( \sim 130 \) km lying above the 660, which is depressed slightly to 665 km (Fig. 2b). The overall feature of the high velocity layer in the MTZ is in agreement with tomographic images (Huang & Zhao 2006; Van Der Hilst et al. 1991) in which a horizontally deflected fast \( V_p \) anomaly extends westwards for \( \sim 800–1000 \) km under Korea Peninsula and NE China. We also found that the 660 is broad, a \( \sim 35 \)-km-thick transition with a large \( V_p \) jump across the boundary, which is consistent with the latest \( V_p \) result of Wang & Niu (2010) for the same area. The depth of the 660 in our ‘NEChina_S’, however, is considerably shallower than that determined by previous studies in nearby regions. A 30-km depressed discontinuity as in P-velocity model ‘M3.11’ proposed by Tajima & Grand (1998) can be readily rejected by the mismatch of observed large move out between AB and CD branches and position of their crossover point O (Figure S7b). Wang et al. (2006) modelled the SH waveform beneath northeast China using a large aperture array, and suggested an even deeper 660-km discontinuity at 730 km. However, such a large depression would result in a further terminal distance of AB phase at \( \sim 32^{\circ} \), which is inconsistent with our observation (Figure S7b).

We argue that limitation of the earlier data, error estimation in focal depth, lateral variation of the MTZ, and subtle effects of variation in physical properties on \( P \) and \( S \) velocities, might contribute to the discrepancy.

The observed \( V_p \) anomaly may be converted to a difference in temperature if the velocity variations are purely induced from thermal origin. Based on the 1-D velocity profile of ‘NEChina_S’ (Fig. 2b), we first identify that the maximum velocity anomaly relative to the trend of the velocity throughout the MTZ to be \( \sim 1.3 \) per cent, which occurs at depth of around 600 km. The average anomaly in the lower \( \sim 130 \) km of the MTZ is about 1 per cent. Taking the temperature derivative of \( \sim 6 \) to \( \sim 7 \times 10^{-5} \) K\(^{-1}\) for shear wave velocity (Cammarano et al. 2003), we can then calculate the corresponding temperature deficit to be around 143–166 K. Since the Clapeyron
slope of the phase decomposition of ringwoodite around the 660 is between –2.0 and –3.0 MPa K\(^{-1}\) (Bina & Helffrich 1994; Litasov et al. 2005), we expected the 660-km discontinuity be depressed by about 8–10 km, which is also consistent with our preferred model ‘NEChina_S’.

A number of experimental studies imply the presence of water in the slab and the surrounding MTZ (e.g. Karato 2011). Water in the MTZ can be stored in wadsleyite and ringwoodite up to 3 wt. per cent (Bercovici & Karato 2003), resulting in a reduced shear velocity and increased \(\frac{V_p}{V_s}\) ratio. To characterize the variation of Poisson’s ratio in this region, we go through another round of \(P\)-wave analysis using the same pair of station–event geometry as in the \(S\)-wave study. Our preferred \(V_p\) model ‘NEChina_P’ (Fig. 2c) is almost identical to that of Wang & Niu (2010), despite one minor difference in the sharpness of the 660. Unlike the overall slow \(V_p\) in the MTZ relative to iasp91 in the ‘NEChina_S’, the corresponding \(P\)-wave velocity seems to be quite ‘normal’ as a whole. We estimate the \(\frac{V_p}{V_s}\) ratio of the upper MTZ and the anomalously fast lower part to be \(\sim 1.87\) and \(\sim 1.84\), respectively, higher than the values of 1.84 and 1.82 in the global average model iasp91. Pure thermal effects could not explain the discordance between variations in \(V_p\) and \(V_s\); while effect of major element geochemistry seems to be complex and difficult to reconcile (Higo et al. 2006). One simple and possible explanation is the presence of hydroxyls that structurally corporate into mantle minerals (Jacobsen & Smyth 2006; Jacobsen et al. 2004). The laboratory experiment on Fe-bearing ringwoodite indicates that adding 0.1 wt. per cent H\(_2\)O can reduce shear wave velocity by about 0.04 km s\(^{-1}\) at lower transition zone condition (Jacobsen et al. 2004). Based on those findings and the \(V_p\) reduction of 0.08–0.12 km s\(^{-1}\) in our ‘NEChina_S’ relative to iasp91, we propose that a possible water content of \(\sim 0.2–0.3\) wt. per cent H\(_2\)O \(\left(\left[(3.0–4.5) \times 10^4\right] \text{ppm H}/\text{Si}\right)\) exists in the MTZ.

Fukao (2009) argued that subducted slabs generally tend to be horizontally flattened between the depth of 400 and 1000 km. The subducting slab is deflected horizontally when the downgoing part hits the bottom of the upper mantle, where the great depression of the 660 is expected. Li & Yuan (2003) detected a maximum depression of \(\sim 35\) km to the northeast corner of our sampled region where the downgoing slab reaches the bottom of the MTZ (red dot, inset of Fig. 1). Slightly further to the east, a gentle decrease of the depressed 660-km discontinuity from depth of 680 km to 665 km is revealed by (Li et al. 2008) who used the source-side \(S\)-to-\(P\) converted wave to map out detailed changes of the 660 topography (red line, inset of Fig. 1). From the degree of the 660 depression, we speculate that along the 660-km discontinuity, it is coldest in the bottoming part of the downgoing slab, corresponding to an anomaly of \(\sim –400\) K; while it is less cold in the flattened part westwards, where our study region is mainly focused (Fig. 3). Combined with the tomographic images beneath north China (Huang & Zhao 2006), our results imply that the stagnant Pacific slab lies subhorizontally in a water-bearing MTZ beneath northeastern China (Fig. 3). The east margin of the water-bearing MTZ, however, is difficult to constrain due to the spatial coverage of the array. The deduced \(\sim 0.2–0.3\) wt. per cent water content might not be distributed uniformly between the MTZ itself and the surrounding slab. Nevertheless how water is transported and stored in the MTZ is still a question for further investigation.

Overall, our results are consistent with the hypothesis that the near-horizontal deflection of subducted slab could be caused by the eastward migration of the Japan Trench. Numerical models found that trench migration tends to prevent slab penetration into the lower mantle and to facilitate the slab flattening above the phase boundary. The rapid trench migration, under Japan-Kurile arc from Miocene revealed by palaeotectonic reconstruction studies (Miller et al. 2006), might create a shallow dip angle and result in a horizontally deflected slab extending westwards over a long distance in the MTZ beneath northeast China.

4 CONCLUSIONS

Our results indicate a high-velocity anomaly in the deeper part of a water-bearing MTZ. There is a broad 660-km discontinuity with a slight depression beneath the study region, implying a limited temperature anomaly beneath the westward extended stagnant slab. The integrated picture of the slab and the undulation of the 660 support a scenario that the slab is not penetrating directly into the lower mantle, but rather lying horizontally above the 660, which might be due to the eastward retreat of the Japan Trench. Nevertheless, for a full understanding of the geodynamic mechanism and composition of the MTZ beneath the northwestern Pacific subduction zone, finite difference synthetic scheme for a 3-D velocity structure should be applied in the modelling to account for the lateral variation, and a joint \(P\) and \(S\) waveform modelling with the same receiver–source geometry for a larger aperture is required.

ACKNOWLEDGMENTS

We thank the Data Management Centre of China National Seismic Network at Institute of Geophysics, China Earthquake Administration for providing seismic waveform data. We thank S. Rost and an anonymous reviewer for constructive suggestion and comments, which greatly improve the manuscript. We thank F. Niu for useful discussion and W. Jacoby for grammatical correction. This work was supported by the NSFC (grants 41074034, 40774042 and 90714012), and NSC (grant 99-2116-M-002-006-MY2).

REFERENCES
