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Abstract High-precision modeling of seismic-wave propagation in heterogeneous
media is very important to seismological investigation. However, such modeling is one
of the difficult problems in the seismological research fields. For developingmethods of
seismic inversion and high-resolution seismic-wave imaging, the modeling problem
must be solved as perfectly as possible. Moreover, for long-term computations of seis-
mic waves (e.g., Earth’s free-oscillations modeling and seismic noise-propagation
modeling), the capability of seismic modeling methods for long-time simulations is
in great demand. In this paper, an alternativemethod for accurately and efficientlymod-
eling seismic wave fields is presented; it is based on amultisymplectic discrete singular
convolution differentiator scheme (MDSCD). This approach uses optimization and trun-
cation to form a localized operator, which preserves the fine structure of the wave field
in complex media and avoids noncausal interaction when parameter discontinuities are
present in the medium. The approach presented has a structure-preserving property,
which is suitable for treating questions of high-precision or long-time numerical
simulations. Our numerical results indicate that this method can suppress numerical
dispersion and allow for research into long-time numerical simulations of wave fields.
These numerical results also show that the MDSCD method can effectively capture the
inner interface without any special treatment at the discontinuity.

Introduction

High-precision seismic modeling methods become
increasingly important due to practical demands for seis-
mological research and seismic exploration. Especially,
high-precision or long-time modeling of seismic-wave prop-
agation is required when dealing with seismic-wave propaga-
tion in highly heterogeneous media, seismic-wave inversion,
high-resolution seismic-wave imaging, or Earth’s free-
oscillations modeling and seismic noise-propagation model-
ing. Generally, seismic modeling methods can be classified
into three categories: direct methods, integral-equation meth-
ods and ray-tracing methods. Carcione et al. (2002) gave a
classical review of these methods. In this paper, emphasis
is placed on direct methods.

Modeling seismic waves in the time domain using direct
methods involves discretization of both space and time
variables. Themostwidely used directmethods for spatial dis-
cretizations are: classical finite difference (FD) methods
(Claerbout, 1985; Bayliss et al., 1986; Levander, 1988), pseu-
dospectral methods (Gazdag, 1981), and finite element
methods (Ciarlet and Lions, 1991). Some optimized methods
or combinations of these methods are also available, such as
optimized finite difference methods (Holberg, 1987; Geller
and Takeuchi, 1998; Takeuchi and Geller, 2000;Moczo et al.,
2002), convolution differentiator methods (Mora, 1986;

Etgen, 1987; Zhou and Greenhalgh, 1992; Yomogida and
Etgen, 1993), spectral element methods (Komatitsch and
Tromp, 2002; Komatitsch and Vilotte, 1998), and finite
volume methods (Dormy and Tarantola, 1995). Each of these
methods has its merits and drawbacks. In past years, a discrete
singular convolution differentiator for solving partial differen-
tial equations has been developed (Feng and Wei, 2002;
Sun and Zhou, 2006). The differentiator can use optimization
and truncation to form a localized operator. This is a high-
precision and efficient operator to solve partial differential
equations. In this paper, the discrete singular convolution
differentiator will be selected for spatial differentiation.

In the past ten years, the second-order finite difference
method for temporal discretizations has been widely used.
Because the classical finite difference methods for temporal
discretizations are not structure-preserving methods, it is
extremely difficult to avoid accumulated errors in precise or
long-time numerical simulations for partial differential equa-
tions using these methods. When numerically solving differ-
ential equations, some numerical algorithms can preserve
the corresponding structures. This can be called the structure-
preserving property of a numerical algorithm. The structure-
preserving property of symplectic algorithms is well known.
Theoretically, a numericalmethod forHamiltonian dynamical
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systems can be called a symplectic algorithm if the resulting
numerical solution is also a symplectic mapping. Some
symplectic algorithms for partial differential equations have
been developed and used, such as the Lax–Wendroff methods
(Dablain, 1986; Carcione et al., 2002) and Nyström methods
(Qin and Zhu, 1991; Hairer et al., 1993; Okunbor and Skeel,
1992; Calvo and Sanz-Serna, 1993; Tsitouras, 1999; Blanes
and Moan, 2002; Lunk and Simen, 2005). Chen (2009) dis-
cussed the structure-preserving property of the Lax–Wendroff
and Nyström methods in detail.

In this paper, we present an alternative method for
accurately and efficiently modeling seismic wave fields
using a multisymplectic discrete singular convolution differ-
entiator algorithm (MDSCD). Here, a truncated and opti-
mized discrete singular convolution differentiator (DSCD)
is used for spatial discretizations. Theoretically, the DSCD
is a localized operator that can describe both the fine struc-
ture of wave fields in complex media and avoid any noncau-
sal interaction of the propagating wavefields when parameter
discontinuities are present in the medium. The operator is
truncated for practical implementation. Nine-point operators
on regular grids are used as a compromise between compu-
tational efficiency and accuracy. In order to improve the
capability of seismic modeling methods for long-time
simulations, we substitute the third-order partitioned Runge–
Kutta scheme (a multisymplectic algorithm) for the second-
order finite difference scheme in temporal discretizations.
The MDSCD scheme is highly localized in the spatial domain
and is not as accurate as global methods (e.g., the Fourier
pseudospectral scheme) for approximating bandlimited peri-
odic functions or for approximating spatial derivatives of
smooth functions, though it is more suitable for treating non-
bandlimited problems and for treating complex geometries
(e.g., approximating spatial derivatives of discontinuous
functions). For temporal discretization, the scheme presented
is a third-order operator, which requires slightly more com-
putational time than does second-order finite difference time
discretization.

As an example, we apply the MDSCD to seismic scalar
wave-field modeling in heterogeneous media. Our numerical
results indicate that the MDSCD is suitable for large-scale
numerical modeling because it effectively suppresses numer-
ical dispersion by discretizing the wave equation when
coarse grids are used. From these numerical results, we find
that the MDSCD method can effectively capture the inner
interface without any special treatment at the discontinuity.
The numerical results also confirm that the MDSCD pre-
sented in this paper has the superior performance to solve
long-time simulation problems.

Theoretical Method

Discrete Singular Convolution Differentiator

A powerfully spatial derivative operator is one of the
keys to solving wave equations for strongly heterogeneous

media. The most effort has been focused on developing
either global methods (Fornberg, 1990; Chen, 1996; Zhao
et al., 2003) or localized methods (Zhou and Greenhalgh,
1992; Bayliss et al., 1986; Mora, 1986; Etgen, 1987; Hol-
berg, 1987; Levander, 1988; Yomogida and Etgen, 1993;
Geller and Takeuchi, 1998; Komatitsch and Vilotte, 1998;
Takeuchi and Geller, 2000; Komatitsch and Tromp, 2002;
Moczo et al., 2002; Yang et al., 2004) for solving partial
differential equations. Generally, the local methods (e.g.,
methods of finite difference, finite volumes, and finite
elements) are highly localized in the spatial domain, yet are
delocalized in their spectral domain; global methods, such as
the Fourier spectral method, are highly localized in their
spectral representations and localized in the spatial domain.
As a consequence, global methods appear to be more accu-
rate than local methods when they are used to approximate
spatial derivatives of a smooth function. The main advantage
of local methods is their flexibility for satisfying special
boundary conditions and for treating complex geometries.
In this paper, we select a discrete singular convolution dif-
ferentiator with optimization and truncation for spatial dis-
cretizations of wave equations. This differentiator can be
considered as a localized operator, though mathematical
analysis (Qian, 2003) indicates that the regularized Shannon
delta kernel is a local spectral kernel. Numerical analysis
(Feng and Wei, 2002; Sun and Zhou, 2006) indicates that
the discrete singular convolution scheme can be more accu-
rate than global methods (e.g., the Fourier pseudospectral
methods) for treating nonbandlimited problems and for treat-
ing complex geometries (e.g., approximating spatial deriva-
tives of discontinuous functions), even if it is not as accurate
as global methods for approximating bandlimited periodic
functions or for approximating spatial derivatives of smooth
functions.

Here, we begin by summarizing the discrete singular
convolution differentiator for the spatial derivative to solve
wave equations. Let T�x � t� be a singular kernel and η�x� be
an element of the space of test function. A singular convolu-
tion is defined as

f�x� � �T � η��x� �
Z ∞
�∞

T�x � t�η�t�dt: (1)

Here, singular kernels of the delta type are required:

T�x� � δ�q��x�; �q � 0; 1; 2;…�: (2)

The singular kernel T�x� � δ�x� is of particular importance
for interpolation of surfaces and curves. Higher-order kernels
T�x� � δ�q��x�, where (q � 0; 1; 2…), are essential for
numerically solving partial differential equations. However,
one has to find appropriate approximations to the delta type
singular kernel, which cannot be directly realized in compu-
ters. Finally, a sequence of approximations is considered as
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lim
α→α0

δ�q�α �x� � δ�q��x�; q � 0; 1; 2;…; (3)

where α is a parameter that characterizes the approximation,
with α0 being a generalized limit. Among various approxi-
mation kernels, the regularized Shannon delta kernel
(Gottlieb et al., 1981) is an excellent candidate. It can be
written as

δσ;Δ�x� �
sin π

Δ x
π
Δ x

exp
�
� x2

2σ2

�
:

In this formula, Δ is the grid spacing, and σ determines
the width of the Gaussian envelope. For a given σ ≠ 0,
the limit ofΔ → 0 reproduces the delta kernel (distribution).
With the regularized Shannon delta kernel, a function u and
its n-th order derivative can be approximated by a discrete
convolution

u�q��x�≈ X⌈x⌉�W

k�⌈x⌉�W
δ�q�σ;Δ�x � xk�u�xk�; q � 0; 1; 2;…;

(5)

where ⌈x⌉ denotes the grid point that is closest to x, and
2W � 1 is the computational bandwidth (or effective kernel
support), which is usually smaller than the computational
bandwidth of the spectral method (i.e., the entire domain
span). Generally, a larger W will lead to a higher accuracy.
When q � 1, the first-order derivative d1�x� can be discre-
tized as

d1�kΔx� �
�
δ0σ;Δ�kΔx� k � �1;�2;…
0 k � 0

; (6)

where Δx is the grid spacing. For practical implementation,
the differentiator has to be truncated as a short operator, but
doing so could lead to the Gibbs phenomenon. To avoid the
Gibbs phenomenon, we use a Hanning window function for
truncating the differentiator:

w�k� �
�
2α � 1� 2�1 � α� cos2 kπ

2�W � 2�

�β=2
;

k � 0;�1;�2;…;W: (7)

The constants α�0:5 ≤ α ≤ 1� and β allow a family of dif-
ferent windows to be considered. A modified and practical
convolutional differentiator can be denoted by

d̂�iΔx� �
�
d�iΔx�w�i� i � 1; 2; � � � ; m
0 i � 0

: (8)

For the second-order derivative, the convolutional differen-
tiator is written as d̂2�iΔx�.

From the discrete Fourier analysis of the discrete singu-
lar convolution (Feng and Wei, 2002; Yang et al., 2002), the

accuracy of the operator clearly depends on its length. The
error analysis also indicates that the accuracy of the discrete
singular convolution approximation to the derivative is con-
trollable and can be better than the traditional higher-order
finite difference approximation. To obtain an optimal balance
between computational efficiency and accuracy of the dis-
crete singular convolution approach, we chose nine-point
explicit operators on regular grids via the discrete Fourier
analysis.

The Convolutional Differentiator Expression
of the Scalar Seismic-Wave Equation

Generally, the scalar equation for two-dimensional (2D)
arbitrarily heterogeneous media in the time domain can be
written as

1

v2
∂2u�x; z; t�

∂t2 � ∂2u�x; z; t�
∂x2 � ∂2u�x; z; t�

∂z2 � f�x; z; t�;
(9)

where u is the scalar wave field, v is the velocity of the wave,
f is the body force, x and y are Cartesian coordinates, and t is
the time. In the convolutional differentiator method, the
spatial derivatives of u in equation (9) can be written as

∂2u�x; z; t�
∂x2 � d̂1�x� � 	d̂1�x� � u�x; z; t�
; (10)

where * stands for the convolution with respect to x and
d̂1�x� is the convolutional differentiator for the first-order
derivative. Similarly, d̂2�x� is the convolutional differentiator
for the second-order derivative. Therefore, equation (9) can
be expressed as

∂2u�x; z; t�
∂t2 � v2�x; z; t�fd̂2�x� � u�x; z; t�

� d̂2�z� � u�x; z; t�g � f�x; z; t�; (11)

where d̂2 � d̂1 � d̂1.

Discrete Seismic Scale Wave Modeling Formulas

For seismic modeling in the discrete domain, generally,
the solution of the seismic scalar wave in equation (11) can
be written as

u�m; n; t�Δt� � 2u�m; n; t� � u�m; n; t �Δt�

� v2�m; n�Δt2
�
Δx

Xmx

i��mx

d̂2�iΔx�u�m � i; n; t�

�Δz
Xnz
j��nz

d̂2�jΔz�u�m; n � j; t� � f�m; n; t�
�
; (12)

where m and n are indices along the discrete x and z axes;
Δx,Δz, andΔt are sampling rates along the x, z, and t axes;
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and mx and nz are the half differentiator lengths in sampling
number along the x and z axes. In equation (12), the second-
order central FD operator is employed for temporal discre-
tizations, and the spatial derivative operator is not based
on a Taylor expansion. However, equation (12) is not a
structure-preserving (symplectic) scheme, and it does not
guarantee computational accuracy for high-precision and
long-time simulations. To improve accuracy of the long-time
modeling, a multisymplectic scheme has to be employed for
temporal discretizations. Applying the discrete singular
convolution differentiator to a multisymplectic partial differ-
ential equation system, a multisymplectic discrete singular
convolution differentiator method can be obtained.

Applying an explicit third-order partitioned Runge–
Kutta temporal discretization scheme (Iwatsu, 2009) to equa-
tion (11), we can obtain

V1 � vn �Δtc1fL�un� � f�m; n; t�g;
U1 � un �Δtd1V1; V2 � V1 �Δtc2L�U1�;
U2 � U1 �Δtd2V2; vn�1 � V2 �Δtc3L�U2�;

un�1 � U2 �Δtd3v
n�1; (13)

where

L � v2�m; n�
�
Δx

Xmx

i��mx

d̂2�iΔx� �Δz
Xnz
j��nz

d̂2�jΔz�
�
;

un�1 � u�m; n; t�Δt�; c1 �
1

12

� ��������
209

2

r
� 7

�
;

c2 �
11

12
; c3 �

1

12

�
8 �

��������
209

2

r �
;

d1 �
2

9

�
1�

������
38

11

r �
; d2 �

2

9

�
1 �

������
38

11

r �
;

d3 �
5

9
:

Equation (13) is an explicit third-order multisymplectic
discrete singular convolution differentiator scheme. Iwatsu
(2009) analyzed the computational precision and stability
of the third-order multisymplectic temporal discretization
scheme in detail. From his analysis, it can be seen that the
temporal discretization scheme described previously in this
article is far superior to nonsymplectic temporal discretization
schemes in terms of computational precision and stability.

Numerical Experiments

Generally, the accuracy of numerical schemes is evalu-
ated by considering the numerical dispersion as a function of
the number of grid points per wavelength. Even though the
wave field in a highly heterogeneous medium is usually not
known analytically, the overall performance can still be
judged qualitatively. In this section, we give two numerical

examples for evaluating the performance of the MDSCD
approach.

We compared the numerical results obtained using
MDSCD with those from the Fourier pseudospectral scheme
and conventional high-order FD for a two-layered medium
with a high-velocity contrast. The model consists of two
different wave velocity regions separated by a rough inclined
interface (Fig. 1). The model parameters were a velocity of
C1 � 1500 m=s for the upper layer with the source and a
velocity of C2 � 3000 m=s for the lower layer. The number
of grid points was 256 × 256, the model size was 2550 m×
2550 m, and the wave source was located at �xs; zs� �
�1280 m; 1130 m�. The receiver was located at �xr; zr� �
�1280 m; 1080 m�. The spatial increments were 10 m, and
the time increment was 1 ms. The interface can be considered
a velocity discontinuity because the velocity contrast is very
high. The source, a band-limited Ricker wavelet, is located in
the upper layer and has an amplitude spectrum peak at 30 Hz
and a high-frequency cut at 43 Hz.

Figure 2a is a wave-field snapshot at time 500 ms,
generated by the MDSCD. The snapshots in Figure 2a and
Figure 2b (the latter generated by the Fourier pseudo-
spectral scheme) clearly show that the wavefront of the direct
wave exhibits a semicircular shape at the inner interface.
Other phases (e.g., the reflected, transmitted, and scattered
waves from the interface) are also displayed clearly. The
wavefronts are continuous and mend the velocity discontinu-
ity in the model. From these snapshots, the wave fields
simulated by MDSCD are very clear. There is hardly any grid
dispersion, despite the fact that there are only 3.5 grids or less
per shortest wavelength at the high-cut frequency.

From the preceding comparison of Figure 2a and
Figure 2b, it can be seen that the MDSCD scheme is as

Figure 1. Two-layered medium model: configuration and
parameters.
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accurate as the Fourier pseudospectral scheme for short-time
simulations and for treating uncomplicated geometries.

Comparing the wave-field snapshot generated by the
MDSCD (Fig. 2a) with the conventional high-order FD
(Fig. 2c), one can see that there is hardly any evidence of
numerical dispersion in the MDSCD approach, whereas
numerical dispersion (i.e., periodic oscillation waveforms
after the head wave) is obviously present when using the
conventional high-order FD method. A similar phenomenon
also appears when comparing the synthetic seismograms
(Fig. 3a for the MDSCD, Fig. 3b for the Fourier pseudospec-
tral scheme, and Fig. 3c for the conventional high-order FD).
Note that the number of grid points (or sampling interval)
is consistent among the three methods. Although the accu-
racy of the conventional high-order finite difference can be

improved by heavy oversampling along the spatial axes,
more computational resources would naturally be required.
Therefore, both the MDSCD and the Fourier pseudospectral
scheme are suitable for large-scale numerical modeling with
coarse spatial grids.

Based on these results, we conclude that the convolu-
tional operator designed here is accurate to about 3.5 grids
or less per shortest wavelength. Also, the MDSCD method
effectively captures the inner interface without any special
treatment at the discontinuity.

To examine the long-time performance of the MDSCD
scheme, we compared the numerical results computed by
MDSCD with those from a Fourier pseudospectral scheme
for a 2D homogeneous medium model. The model parameter
is a velocity ofC � 3000 m=s. The number of grid points was

Figure 2. Snapshots of seismic wave fields (a) in a two-layered medium model at time 500 ms, generated by MDSCD, (b) using the
Fourier pseudospectral method, and (c) the conventional high-order FD method.
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256 × 256, the model size was 5100 m × 5100 m, and the
wave source was located at �xs; zs� � �2550 m; 2550 m�.
The spatial increments were 20 m, and the time increment
was 2 ms. The source, a bandlimited Ricker wavelet has an
amplitude spectrum peak at 25 Hz.

Figure 4a–c show wave-field snapshots generated by the
MDSCD scheme after 400, 2000, and 5000 time steps,
respectively. Similarly, Figure 4d–f display wave-field snap-
shots generated by the Fourier pseudospectral scheme after
400, 2000, and 5000 time steps, respectively. From Figure 4a
and Figure 4d, it is apparent that the wavefront curves gen-

erated by the two schemes after 400 time steps are quite clear.
For short-time numerical simulations, therefore, they have
similar performance in the same case. For long-time numer-
ical simulations, however, the aforementioned two schemes
perform quite differently and have different error growth.
After 2000 times steps, the MDSCD scheme has slightly
numerical dispersion, whereas the Fourier pseudospectral
scheme suffers obvious numerical dispersion. After 5000
time steps, the wavefront curves computed by the MDSCD
scheme are still clearly seen. At this time, however, the
wavefront curves computed by the Fourier pseudospectral
scheme have blurred seriously. The CPUs (Core 2 Duo
2.53 GHz) time for the MDSCD scheme and the Fourier pseu-
dospectral scheme are 685.2813 s and 560.5625 s, respec-
tively. This comparison indicates that the two schemes
perform very differently for long-time computation, and
the MDSCD scheme is very suitable for long-time simulation.

Conclusions

In this paper, a novel approach for a seismic scalar wave
equation with variable coefficients modeling has been pre-
sented, which is based on an explicit third-order multisym-
plectic discrete singular convolution differentiator scheme
(MDSCD). For temporal discretizations, the MDSCD method
is a structure-preserving scheme. In theory, it is suitable for
long-time simulations. For spatial discretizations, nine-point
operators on regular grids are designed for optimizing the
computational efficiency and accuracy of the presented
approach. The nine-point MDSCD is a localized operator that
can describe the local properties of complicated wave fields
and avoid noncausal interaction of the propagating wave
field when parameter discontinuities are present in the
medium. This approach is therefore suitable for large-scale
numerical modeling because it effectively suppresses numer-
ical dispersion by discretizing the wave equations when
coarse grids are used. Because the MDSCD approach is
equivalent to an optimized FD method in nature, it is suitable
to any type of absorbing or transmitted boundary condition
that is suitable for conventional FD methods.

In this paper, the numerical experiments focus on
comparison of the MDSCD scheme with the Fourier pseudo-
spectral scheme. The Fourier pseudospectral method is accu-
rate and efficient for smooth functions (e.g., problems
associated with smooth heterogeneous media), but a global
operator is used when taking the Fourier transform that
can lead to nonlocal interactions between globally distant
points. This is inconsistent with physical phenomena where
interactions occur through local wave motion. In theory,
the MDSCD scheme is highly localized in the spatial domain
and is not as accurate as global methods (e.g., the Fourier
pseudospectral scheme) for approximating bandlimited
periodic functions or for approximating spatial derivatives
of smooth functions, though it is more suitable for treating
nonbandlimited problems and for treating complex geome-
tries (e.g., approximating spatial derivatives of discontinuous

Figure 3. Comparison of synthetic seismograms for (a) a
two-layered medium model generated by the MDSCD, (b) the
Fourier pseudospectral method, and (c) the conventional high-order
FD method.
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Figure 4. Snapshots of seismic wave fields in a 2D homogeneous mediummodel generated byMDSCD after (a) 400 time steps, (b) 2000
time steps, and (c) 5000 time steps. Snapshots of seismic wave fields in the same medium model generated by the Fourier pseudospectral
method after (d) 400 time steps, (e) 2000 time steps, and (f) 5000 time steps.
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functions). For temporal discretization, the scheme presented
is a third-order operator, which requires slightly more com-
putational time than second-order finite difference time dis-
cretization for long-time simulations.

From the simulation results in this paper, it has been
shown that the MDSCD method can effectively capture the
inner interface without any special treatment at the disconti-
nuity; therefore, it can simulate seismic waves in compli-
cated geometries and highly heterogeneous media without
any additional treatment. The MDSCD allows us to use a
coarse grid, that is, fewer samples per wavelength, to achieve
the same accuracy in modeling waves and is similar to that
obtained by conventional FD schemes on a finely-sampled
grid. The numerical experiments also demonstrate the
remarkable ability of the MDSCD for long-time simulation.
The results here hold promise not only for future seismic-
wave studies but also for any geophysical study that requires
high-precision numerical solution (or long-time simulations)
of partial differential equations with variable coefficients.
Although the new method is only applied to the 2D scalar
wave-field calculation for heterogeneous models and to
long-time simulation of the 2D scalar wave field in this paper,
it can be readily extended to 3D scalar wave-field calcula-
tions. For elastic wave-field calculations, the modification
and extension of the new method will be described in a later
paper.

Data and Resources

No data were used in this paper. All plots were made
using the Surface Mapping System, version Surfer32 (avail-
able at http://www.freedownloadmanager.org/downloads/
surfer‑32‑program‑302675.html) and the 2D Graphing Sys-
tem, version GRAF4WIN (available at http://vetusware.com/
download/Grapher%201.06/?id=6185). (The programs were
last accessed January 2011.)

Acknowledgments

This work has been supported by the National Natural Science
Foundation of China (Grant No. 40437018, 40874024) and The Ministry
of Science and Technology of People’s Republic of China (973 Program,
Grant No. 2007CB209603).

References

Bayliss, A., K. E. Jordan, B. J. LeMesurier, and E. Turkel (1986). A fourth-
order accurate finite-difference scheme for the computation of elastic
waves, Bull. Seismol. Soc. Am. 76, 1115–1132.

Blanes, S., and P. C. Moan (2002). Practical symplectic partitioned
Runge-Kutta and Runge-Kutta-Nyström methods, J. Comput. Appl.
Math. 142, 313–330.

Calvo, M. P., and J. M. Sanz-Serna (1993). High-order symplectic Runge-
Kutta-Nyström methods, SIAM J. Sci. Comput. 14, 1237–1252.

Carcione, J. M., G. C. Herman, and A. P. E. ten Kroode (2002). Seismic
modeling, Geophysics 67, 1304–1325.

Chen, H. W. (1996). Staggered grid pseudospectral simulation in viscoa-
coustic wavefield simulation, J. Acoust. Soc. Am. 100, 120–131.

Chen, J. B. (2009). Lax-Wendroff and Nyström methods for seismic
modeling, Geophys. Prospect. 57, 931–941.

Ciarlet, P. G., and J. L. Lions (1991). Handbook of Numerical Analysis:
North-Holland, Amsterdam, The Netherlands, 928 pp.

Claerbout, J. F. (1985). Imaging the Earth’s Interior, Blackwell Scientific
Publications, Inc, Cambridge, Massachusetts, 412 pp.

Dablain, M. A. (1986). The application of high-order differencing to the
scalar wave equation, Geophysics 51, 54–66.

Dormy, E., and A. Tarantola (1995). Numerical simulation of elastic wave
propagation using a finite volume method, J. Geophys. Res. 100,
2123–2133.

Etgen, J. T. (1987). Finite-difference elastic anisotropic wave propagation,
Stanford Explor. Proj. 56, 23–57.

Feng, B. F., and G. W. Wei (2002). A comparison of the spectral and the
discrete singular convolution schemes for the KdV-type equations, J.
Comput. Appl. Math. 145, 183–188.

Fornberg, B. (1990). High order finite differences and pseudospectral
method on staggered grids, SIAM J. Num. Anal. 27, 904–918.

Gazdag, J. (1981). Modeling of the acoustic wave equation with transform
methods, Geophysics 46, 854–859.

Geller, R. J., and N. Takeuchi (1998). Optimally accurate second-order
time-domain finite difference scheme for the elastic equation of
motion: One-dimensional case, Geophys. J. I. 135, 48–62.

Gottlieb, D., L. Lustman, and S. A. Orszag (1981). Spectral calculations of
one dimensional, inviscid compressible flow, SIAM J. Sci. Statist.
Comput. 2, 296–310.

Hairer, E., S. P. Nøsett, and G. Warnner (1993). Solving Ordinary
Differential Equations I. Springer-Verlag, Berlin, Germany,
528 pp.

Holberg, O. (1987). Computational aspects of the choice of operator and
sampling interval for numerical differentiation in large-scale simula-
tion of wave phenomena, Geophys. Prosp. 35, 629–655.

Iwatsu, R. (2009). Two new solutions to the third-order symplectic integra-
tion method, Phys. Lett. A 373, 3056–3060.

Komatitsch, D., and J. Tromp (2002). Spectral-element simulation of
global seismic wave propagation—I. Validation, Geophys. J. Int.
149, 390–412.

Komatitsch, D., and J. P. Vilotte (1998). The spectral element method: An
efficient tool to simulate the seismic response of 2D and 3D geological
structures, Bull. Seismol. Soc. Am. 88, 368–392.

Lunk, C., and B. Simen (2005). Runge-Kutta-Nyström methods with
maximized stability domain in structural dynamics, Appl. Numer.
Math. 53, 373–389.

Levander, A. R. (1988). Fourth-order finite-difference P-SV seismograms,
Geophysics 53, 1425–1435.

Moczo, P., J. Kristek, V. Vavrycuk, R. J. Archuleta, and L. Halada (2002).
3D heterogeneous staggered-grid finite-difference modeling of
seismic motion with volume harmonic and arithmetic averaging of
elastic moduli and densities, Bull. Seismol. Soc. Am. 92, 3042–3066.

Mora, P. (1986). Elastic finite-difference with convolutional operators,
Stanford Explor. Proj. 48, 272–289.

Okunbor, P. J., and R. D. Skeel (1992). Canonical Runge-Kutta-Nyström
Methods of Orders 5 and 6: Working Document 92-1, Research
Report, Department of Computer Science, University of Illinois at
Urbana–Champagne, Urbana, Illinois.

Qian, L. (2003). On the regularized Whittaker-Kotel’nikov-Shannon
sampling formula, Proc. Am. Math. Soc. 131, no. 4, 1169–1176.

Qin, M. Z., and W. J. Zhu (1991). Canonical Runge–Kutta–Nyström
methods for second order ODE’s, Comput. Math. Appl. 22,
85–95.

Sun, Y. H., and Y. C. Zhou (2006). A windowed Fourier pseudospectral
method for hyperbolic conservation laws, J. Comput. Appl. Math.
214, no. 2, 466–490

Takeuchi, N., and R. J. Geller (2000). Optimally accurate second-order
time-domain finite difference scheme for computing synthetic
seismograms in 2-D and 3-D media, Phys. Earth Planet. In. 119,
99–131.

Tsitouras, C.. (1999). A tenth-order symplectic Runge-Kutta-Nyström
method, Celestial Mech. Dyn. Astron. 74, 223–230.

Scalar Seismic-Wave Equation Modeling 1717

http://www.freedownloadmanager.org/downloads/surfer-32-program-302675.html
http://www.freedownloadmanager.org/downloads/surfer-32-program-302675.html
http://www.freedownloadmanager.org/downloads/surfer-32-program-302675.html
http://www.freedownloadmanager.org/downloads/surfer-32-program-302675.html
http://www.freedownloadmanager.org/downloads/surfer-32-program-302675.html
http://vetusware.com/download/Grapher%201.06/?id=6185
http://vetusware.com/download/Grapher%201.06/?id=6185


Yang, D. H., M. Lu, R. S. Wu, and J. M. Peng (2004). An optimal nearly
analytic discrete method for 2D acoustic and elastic wave equations,
Bull. Seismol. Soc. Am. 94, 1982—1991.

Yang, S. Y., Y. C. Zhou, and G. W. Wei (2002). Comparison of the discrete
singular convolution algorithm and the Fourier pseudospectral
method for solving partial differential equations, Comput. Phys.
Comm. 143, 113.

Yomogida, K., and J. T. Etgen (1993). 3-D wave propagation in the Los
Angeles Basin for the Whittier-Narrows earthquake, Bull. Seismol.
Soc. Am. 83, 1325–1344.

Zhao, Z., J. Xu, and H. Shigeki (2003). Staggered grid real value FFT
differentiation operator and its application on wave propagation
simulation in the heterogeneous medium, Chin. J. Geophys. 46,
no. 2, 234–240 (in Chinese).

Zhou, B., and S. A. Greenhalgh (1992). Seismic scalar wave equation
modeling by a convolutional differentiator, Bull. Seismol. Soc. Am.
82, 289–303.

Key Laboratory of the Earth’s Deep Interior, CAS
Institute of Geology and Geophysics
Chinese Academy of Sciences
Beijing 100029, People’s Republic of China
xflee150@sohu.com

Manuscript received 27 September 2010

1718 X. Li, Y. Li, M. Zhang, and T. Zhu


