加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 每日科学

迄今最小光学陀螺仪没米粒大

未来可应用于无人机和航天器

2018-10-29 科技日报 刘霞
【字体:

语音播报

新光学陀螺仪比一粒米还小。图片来源:每日科学网站

  据美国每日科学网站近日报道,美国科学家研制出了迄今全球最小的光学陀螺仪,其个头比一粒米还小,仅为目前最尖端光学陀螺仪大小的1/500,未来有望用于无人机和航天器上。

  陀螺仪是帮助车辆、无人机、可穿戴设备等明确其在三维空间中方向的设备。光学陀螺仪借助“萨格纳克效应”(Sagnac Effect)来获得高精度。该效应以法国物理学家乔治斯·萨格纳克的名字命名,可用于计算方向。

  但目前市场上最小的高性能光学陀螺仪比高尔夫球还大,不适合于许多便携式应用。而且,随着光学陀螺仪越来越小,其捕获萨格纳克效应的信号也越来越弱,检测运动变得越来越困难,因而成为光学陀螺仪小型化之路上的“拦路虎”。

  现在,加州理工学院电子工程和医学工程系教授阿里·哈吉米瑞领导的科研团队,研制出了一种新的光学陀螺仪,其大小仅为目前同类最先进设备的1/500,但它们可以检测到比这些系统小30倍的相位移动。

  新型陀螺仪采用了一种名为“相互灵敏度增强”的新技术来改进性能。“相互”意味着对陀螺仪内两束光的影响一模一样。

  由于萨格纳克效应依赖于检测两束光在相反方向上行进时的差异,因此它被认为是非互易的。在新陀螺仪内部,光线从微型光学波导(携带光的小导管,功能与电线相同)中通过,光路中可能影响光束的缺陷(例如热波动或光散射)和任何外部干扰都将对两束光产生相同的影响。团队找到了一种方法来消除这种“相互”噪声,同时保留萨格纳克效应的信号。

  相互的灵敏度增强改善了系统中的信噪比,并使光学陀螺仪能集成到比一粒米还小的芯片上。

打印 责任编辑:侯茜

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864

    电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

    编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有
    京ICP备05002857号-1
    京公网安备110402500047号
    网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864
    电话:86 10 68597114(总机)
       86 10 68597289(总值班室)
    编辑部邮箱:casweb@cashq.ac.cn