加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 每日科学

新方法用二维材料控制电子

2015-12-29 科技日报 房琳琳
【字体:

语音播报

  新加坡国立大学研究团队研发了一种控制电子的新方法,能把电子封闭在由原子厚度的材料制成的设备中。这项由该校理学院先进二维材料中心教授安东尼奥·卡斯托·尼托领导的研究成果发表在《自然》杂志上。

  几乎所有现代技术比如电机、灯泡和半导体芯片要通过设备控制电流,电子不仅小而且运动快,还相互排斥,人们很难直接控制电子的运动。若要控制电子的行为,很多半导体材料需要掺杂化学物质,掺杂物在材料中释放或吸收电子,改变电子浓度来驱动电流。然而,掺杂化学物具有局限性,它们会造成材料的不可逆化学变化。

  研究团队将原子厚度的两种材料——钛硒醚与氮化硼封装在一起,仅将外部电子和磁场施加到组合材料上,就能起到化学掺杂物的作用,精确地控制电子的行为并使之可逆。其中,两种材料的厚度很关键,将电子封闭到二维材料涂层内部,电场和磁场就获得了统一。

  尼托说:“我们能让材料变成超导体,而整个材料中的电子移动没有任何能量或热的损失。”原子厚度的二维超导材料比传统超导体更有优势,比如可应用于更小的便携式磁共振成像(MRI)仪器上。

  这项耗时两年开发的技术给高温超导和其他固态现象实验带来了曙光,待测材料种类繁多,大大拓宽了固态材料科学的可能性。但目前的材料需要零下270摄氏度的超低温度来产生功能。研究团队下一步将开发高温二维超导材料,以实现很多令人兴奋的应用,如无损耗电气线路、MRI和悬浮列车等。

打印 责任编辑:侯茜

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864

    电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

    编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有
    京ICP备05002857号-1
    京公网安备110402500047号
    网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864
    电话:86 10 68597114(总机)
       86 10 68597289(总值班室)
    编辑部邮箱:casweb@cashq.ac.cn