加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 传媒扫描

【中国科学报】我国科研团队制备出高性能离子传导膜

2020-11-03 中国科学报 沈春蕾
【字体:

语音播报

  中国科学院金属研究所沈阳材料科学国家研究中心任文才研究员、成会明院士团队制备出一类由二维过渡金属磷硫化物纳米片组装而成的膜,并发现过渡金属空位使该类薄膜具有超快的离子传输性能。近日,相关研究成果发表于《科学》。

  纳米孔道中的离子传输对能量存储和转换应用至关重要,如质子和锂离子传导膜分别是燃料电池和锂离子电池的关键材料。目前,Nafion膜是最常用的商业质子传导膜,它以磺酸基为质子供体中心,质子通过在纳米孔道中形成的水分子网络进行传导,质子传导率可达0.2S/cm。然而,在高温(>80℃)和/或低湿条件下,由于含水量的降低,其性能会发生严重衰减。

  近年来,相关研究人员先后发展了多种质子传导膜,包括基于MOF、生物材料和氧化石墨烯的膜材料。这些膜材料也均以官能团(如磷酸基、羧基、羟基等)作为质子供体中心,但其性能较Nafion膜仍有很大差距。

  这次,研究人员发现,Cd0.85PS3Li0.15H0.15薄膜为质子传输占主导的离子导体,在90℃和98%相对湿度条件下的传导率高达0.95S/cm,是当前已报道的水相质子传输材料的性能最高值,并且在低温、低湿条件下仍保持了很高的质子传导率。

  进一步的研究发现,Cd空位不仅提供了大量的质子供体中心,而且使该薄膜具有优异的水合性质,且质子在水分子的存在下易于从空位处脱附,从而使薄膜表现出优异的质子传导特性。此外,他们还发现Cd0.85PS3Li0.3和Mn0.77PS3Li0.46薄膜具有超快的锂离子传导特性,证明了空位诱导离子快速传输的普适性。

  空位诱导离子快速传输为设计与开发高性能离子传导膜提供了一种新思路。

  相关论文信息:

  https://doi.org/10.1126/science.abb9704

  (原载于《中国科学报》 2020-11-03 第1版 要闻)
打印 责任编辑:侯茜

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864

    电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

    编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有
    京ICP备05002857号-1
    京公网安备110402500047号
    网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864
    电话:86 10 68597114(总机)
       86 10 68597289(总值班室)
    编辑部邮箱:casweb@cashq.ac.cn